Skip to content

vllm.model_executor.layers.fused_moe.runner.default_moe_runner

DefaultMoERunner

Bases: MoERunner

Default implementation of the MoE runner for executing Mixture of Experts layers.

This class provides a comprehensive implementation for running MoE computations with support for: - Expert routing and token dispatching - Shared experts computation with optional parallel execution using CUDA streams - Data parallel (DP) chunking for large batch processing - Tensor model parallel and expert parallel operations - Various quantization methods and custom operators - Both monolithic and decomposed expert execution paths

The runner handles the complete MoE forward pass including routing tokens to experts, executing expert computations, and combining results. It supports advanced features like overlapped execution of shared experts and optimized kernels for different parallel execution modes.

Eventually, this class will be split up and specialized for different configurations, e.g. the presense or absence of shared experts, a gate, etc.

Source code in vllm/model_executor/layers/fused_moe/runner/default_moe_runner.py
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
class DefaultMoERunner(MoERunner):
    """
    Default implementation of the MoE runner for executing Mixture of Experts layers.

    This class provides a comprehensive implementation for running MoE computations
    with support for:
    - Expert routing and token dispatching
    - Shared experts computation with optional parallel execution using CUDA streams
    - Data parallel (DP) chunking for large batch processing
    - Tensor model parallel and expert parallel operations
    - Various quantization methods and custom operators
    - Both monolithic and decomposed expert execution paths

    The runner handles the complete MoE forward pass including routing tokens to
    experts, executing expert computations, and combining results. It supports
    advanced features like overlapped execution of shared experts and optimized
    kernels for different parallel execution modes.

    Eventually, this class will be split up and specialized for different
    configurations, e.g. the presense or absence of shared experts, a gate, etc.
    """

    def __init__(
        self,
        layer: torch.nn.Module,
        moe_config: FusedMoEConfig,
        router: FusedMoERouter,
        routed_input_transform: torch.nn.Module | None,
        gate: torch.nn.Module | None,
        shared_experts: torch.nn.Module | None,
        quant_method: FusedMoEMethodBase,
        reduce_results: bool,
        enable_dbo: bool,
    ):
        super().__init__()
        self.moe_config = moe_config
        self.router = router
        self.routed_input_transform = routed_input_transform
        self.gate = gate
        self.shared_experts = shared_experts
        self.quant_method = quant_method
        self.reduce_results = reduce_results
        self.enable_dbo = enable_dbo

        # Allow disabling of the separate shared experts stream for
        # debug purposes.
        # TODO: Remove this after more extensive testings with TP/DP
        # and other execution modes
        if envs.VLLM_DISABLE_SHARED_EXPERTS_STREAM:
            logger.debug_once("Disabling MoE shared_experts cuda stream", scope="local")
            self.shared_experts_stream = None
        else:
            # TODO(rob): enable shared expert overlap with non-cuda-alike.
            # aux_stream() returns None on non-cuda-alike platforms.
            self.shared_experts_stream = aux_stream()
            if self.shared_experts_stream is not None:
                logger.debug_once(
                    "Enabled separate cuda stream for MoE shared_experts", scope="local"
                )

        # Needed for string -> FusedMoE layer lookup in custom ops.
        self.layer_name = layer.layer_name

        if current_platform.is_tpu() or current_platform.is_cpu():
            # TODO: Once the OOM issue for the TPU backend is resolved, we
            # will switch to using the moe_forward custom op.
            # Note: CPU doesn't require wrapped forward_impl.
            if self.shared_experts is None:
                self.moe_forward = _moe_forward
            else:
                self.moe_forward = _moe_forward_shared
        else:
            if self.shared_experts is None:
                self.moe_forward = torch.ops.vllm.moe_forward
            else:
                self.moe_forward = torch.ops.vllm.moe_forward_shared

        # Chunked all2all staging tensor
        self.batched_hidden_states: torch.Tensor | None = None
        self.batched_router_logits: torch.Tensor | None = None

    @property
    def use_dp_chunking(self) -> bool:
        return (
            self.moe_config.moe_parallel_config.use_pplx_kernels
            or self.moe_config.moe_parallel_config.use_deepep_ll_kernels
            or self.moe_config.moe_parallel_config.use_mori_kernels
            or self.moe_config.moe_parallel_config.use_fi_all2allv_kernels
        ) and envs.VLLM_ENABLE_MOE_DP_CHUNK

    def _maybe_setup_shared_experts_stream(
        self,
        hidden_states: torch.Tensor,
        shared_input: torch.Tensor | None,
        has_separate_shared_experts: bool,
        use_chunked_impl: bool,
    ) -> tuple[bool, torch.Tensor | None]:
        use_shared_experts_stream = (
            current_platform.is_cuda()
            and has_separate_shared_experts
            and not use_chunked_impl
            and self.shared_experts_stream is not None
            and (
                hidden_states.shape[0]
                <= envs.VLLM_SHARED_EXPERTS_STREAM_TOKEN_THRESHOLD
            )
        )

        hidden_states_clone: torch.Tensor | None = None
        if use_shared_experts_stream:
            assert self.shared_experts_stream is not None

            shared_experts_input = (
                shared_input if shared_input is not None else hidden_states
            )

            # Clone BEFORE switching streams to avoid race condition
            # where routed_expert kernel may mutate hidden_states.
            hidden_states_clone = shared_experts_input.clone()

            # Record that the clone will be used by shared_experts_stream
            # to avoid gc issue from deallocation of hidden_states_clone
            # For more details: https://docs.pytorch.org/docs/stable/generated/torch.Tensor.record_stream.html # noqa: E501
            # NOTE: We don't need shared_output.record_stream(current_stream())
            # because we synch the streams before using shared_output.
            hidden_states_clone.record_stream(self.shared_experts_stream)

            # Mark sync start point for the separate shared experts
            # stream here since we want to run in parallel with the
            # router/gate (next op below)
            assert self.shared_experts_stream is not None
            self.shared_experts_stream.wait_stream(current_stream())

        return use_shared_experts_stream, hidden_states_clone

    def ensure_dp_chunking_init(self):
        if not self.use_dp_chunking or self.batched_hidden_states is not None:
            return

        states_shape: tuple[int, ...]
        logits_shape: tuple[int, ...]

        moe = self.moe_config

        if self.enable_dbo:
            states_shape = (2, moe.max_num_tokens, self.moe_config.hidden_dim)
            logits_shape = (2, moe.max_num_tokens, self.moe_config.num_logical_experts)
        else:
            states_shape = (moe.max_num_tokens, self.moe_config.hidden_dim)
            logits_shape = (moe.max_num_tokens, self.moe_config.num_logical_experts)

        self.batched_hidden_states = torch.zeros(
            states_shape, dtype=moe.in_dtype, device=torch.cuda.current_device()
        )

        self.batched_router_logits = torch.zeros(
            logits_shape,
            dtype=moe.router_logits_dtype,
            device=torch.cuda.current_device(),
        )

    def must_reduce_shared_expert_outputs(self) -> bool:
        """
        The shared_experts are typically computed using the RowParallelLinear
        layer. The result of this function is typically used as
        the reduce_results argument to the module.
        When just tensor-parallel is used, it is not required to reduce
        the shared_experts results immediately. Instead we reduce at the
        once at the end of the MoE op. (Refer to DeepSeekV2MoE module)
        With EP and all2all kernels - this is no longer viable as all
        GPU ranks in DP, produce the complete set of hidden_states.
        Therefore it is required that we reduce the shared_experts output
        early.
        """
        assert self.quant_method is not None
        return (
            self.quant_method.moe_mk is not None
            and self.quant_method.moe_mk.output_is_reduced()
        )

    def maybe_all_reduce_tensor_model_parallel(self, final_hidden_states: torch.Tensor):
        """
        Some combine kernels reduce across GPU ranks by default.
        """
        if self.must_reduce_shared_expert_outputs():
            return final_hidden_states
        else:
            return tensor_model_parallel_all_reduce(final_hidden_states)

    def apply_routed_input_transform(self, hidden_states: torch.Tensor) -> torch.Tensor:
        """Apply transform for routed experts (e.g., latent projection).

        This is called by FusedMoE.forward_native. The original hidden_states
        is saved separately so shared experts get [S, hidden_size] while
        routed experts get the transformed [S, moe_latent_size].

        TODO: For latent MoE bandwidth optimization, fc2_latent_proj could be
        moved inside SharedFusedMoE to all-reduce on the smaller latent
        dimension.
        """
        if self.routed_input_transform is not None:
            result = self.routed_input_transform(hidden_states)
            # ReplicatedLinear returns (output, extra_bias) tuple.
            # We only need the output tensor; extra_bias is not used here.
            if isinstance(result, tuple):
                return result[0]
            return result
        return hidden_states

    def _reduce_output(
        self,
        states: torch.Tensor | tuple[torch.Tensor, torch.Tensor],
        trunc_sizes: list[int],
    ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
        def trunc(x: torch.Tensor, trunc_size: int) -> torch.Tensor:
            return x[..., :trunc_size]

        def reduce_and_trunc(x: torch.Tensor, trunc_size: int) -> torch.Tensor:
            return trunc(self.maybe_all_reduce_tensor_model_parallel(x), trunc_size)

        if (
            not self.moe_config.is_sequence_parallel
            and not self.use_dp_chunking
            and self.reduce_results
            and (self.moe_config.tp_size > 1 or self.moe_config.ep_size > 1)
        ):
            func = reduce_and_trunc
        else:
            func = trunc

        if isinstance(states, tuple):
            return tuple(
                [func(s, trunc_size) for s, trunc_size in zip(states, trunc_sizes)]
            )
        else:
            assert len(trunc_sizes) == 1
            return func(states, trunc_sizes[0])

    def _encode_layer_name(self) -> str:
        # Can be unavailable or None in unittests
        if (
            is_forward_context_available()
            and get_forward_context().all_moe_layers is not None
        ):
            return "from_forward_context"
        return self.layer_name

    def forward(
        self,
        hidden_states: torch.Tensor,
        router_logits: torch.Tensor,
    ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
        # For latent MoE: save ORIGINAL hidden_states before transform
        # (shared_experts need original dimension, routed experts use transformed)
        original_hidden_states = hidden_states
        original_hidden_dim = hidden_states.shape[-1]

        # Apply transform for routed experts (e.g., latent projection for latent MoE)
        hidden_states = self.apply_routed_input_transform(hidden_states)

        # This is the dimension after transform (for routed expert output slicing)
        transformed_hidden_dim = hidden_states.shape[-1]
        if self.moe_config.hidden_dim != transformed_hidden_dim:
            hidden_states = F.pad(
                hidden_states,
                (0, self.moe_config.hidden_dim - transformed_hidden_dim),
                mode="constant",
                value=0.0,
            )

        fused_output = self.moe_forward(
            hidden_states,
            router_logits,
            original_hidden_states,
            self._encode_layer_name(),
        )

        if isinstance(fused_output, tuple):
            orig_hidden_dims = [original_hidden_dim, transformed_hidden_dim]
        else:
            orig_hidden_dims = [transformed_hidden_dim]

        return self._reduce_output(fused_output, orig_hidden_dims)

    def forward_impl_chunked(
        self,
        layer: torch.nn.Module,
        full_hidden_states: torch.Tensor,
        full_router_logits: torch.Tensor,
        full_shared_input: torch.Tensor | None,
        has_separate_shared_experts: bool,
    ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
        assert self.batched_hidden_states is not None
        assert self.batched_router_logits is not None
        assert self.batched_hidden_states.dtype == full_hidden_states.dtype, (
            f"{self.batched_hidden_states.dtype} == {full_hidden_states.dtype}"
        )
        assert self.batched_router_logits.dtype == full_router_logits.dtype, (
            f"{self.batched_router_logits.dtype} == {full_router_logits.dtype}"
        )
        # Check size compatibility.
        assert self.batched_hidden_states.size(-1) == full_hidden_states.size(-1)
        assert self.batched_router_logits.size(-1) == full_router_logits.size(-1)

        # TODO(bnell): Fix shared_expert_inputs w/chunking.
        # assert shared_input is None, (
        #    "Routed input transform is not currently supported with DP chunking."
        # )

        full_fused_final_hidden_states = torch.empty_like(full_hidden_states)
        if self.shared_experts is not None:
            full_shared_final_hidden_states = torch.empty_like(full_hidden_states)

        def process_chunk(chunk_start, chunk_end, skip_result_store=False):
            chunk_size = chunk_end - chunk_start
            hidden_states = full_hidden_states[chunk_start:chunk_end, :]
            router_logits = full_router_logits[chunk_start:chunk_end, :]
            shared_input = (
                full_shared_input[chunk_start:chunk_end, :]
                if full_shared_input is not None
                else None
            )

            assert self.batched_hidden_states is not None
            assert self.batched_router_logits is not None
            # This is only true when DBO has been enabled in the config.
            # Both tensors will have an outer dimension for the ubatch id
            if self.batched_hidden_states.dim() == 3:
                assert self.batched_router_logits.dim() == 3
                batch_buffer_idx = dbo_current_ubatch_id()
                batched_hidden_states = self.batched_hidden_states[batch_buffer_idx, :]
                batched_router_logits = self.batched_router_logits[batch_buffer_idx, :]
            else:
                batched_hidden_states = self.batched_hidden_states
                batched_router_logits = self.batched_router_logits

            assert (
                batched_hidden_states.size(0)  # type: ignore
                >= chunk_size
            )
            assert (
                batched_router_logits.size(0)  # type: ignore
                >= chunk_size
            )
            staged_hidden_states = batched_hidden_states[:chunk_size, :]  # type: ignore
            staged_router_logits = batched_router_logits[:chunk_size, :]  # type: ignore
            staged_hidden_states.copy_(hidden_states, non_blocking=True)
            staged_router_logits.copy_(router_logits, non_blocking=True)

            shared_input = (
                shared_input if shared_input is not None else staged_hidden_states
            )

            # Matrix multiply.
            if self.quant_method.is_monolithic:
                assert has_separate_shared_experts or self.shared_experts is None
                final_hidden_states = self.quant_method.apply_monolithic(
                    layer=layer,
                    x=staged_hidden_states,
                    router_logits=staged_router_logits,
                )
            else:
                topk_weights, topk_ids = self.router.select_experts(
                    hidden_states=staged_hidden_states,
                    router_logits=staged_router_logits,
                )

                final_hidden_states = self.quant_method.apply(
                    layer=layer,
                    x=staged_hidden_states,
                    topk_weights=topk_weights,
                    topk_ids=topk_ids,
                    shared_experts_input=shared_input,
                )

            if has_separate_shared_experts:
                assert not isinstance(final_hidden_states, tuple)
                assert self.shared_experts is not None

                shared_output = self.shared_experts(shared_input)

                final_hidden_states = (
                    shared_output,
                    final_hidden_states,
                )

            if not skip_result_store:
                if self.shared_experts is None:
                    full_fused_final_hidden_states[chunk_start:chunk_end, :].copy_(
                        final_hidden_states, non_blocking=True
                    )
                else:
                    full_shared_final_hidden_states[chunk_start:chunk_end, :].copy_(
                        final_hidden_states[0], non_blocking=True
                    )
                    full_fused_final_hidden_states[chunk_start:chunk_end, :].copy_(
                        final_hidden_states[1], non_blocking=True
                    )

        ctx = get_forward_context()
        # flashinfer_cutlass_kernels can handle: optional DP + TP/EP
        max_tokens_across_dispatchers = ctx.dp_metadata.max_tokens_across_dp_cpu
        moe_dp_chunk_size_per_rank = self.moe_config.max_num_tokens

        # If the input to the MoE is sequence parallel then divide by sp_size
        # to find the maximum number of tokens for any individual dispatcher.
        if self.moe_config.is_sequence_parallel:
            max_tokens_across_dispatchers = cdiv(
                max_tokens_across_dispatchers, self.moe_config.sp_size
            )

        num_tokens = full_hidden_states.size(0)
        for chunk_idx, chunk_start_ in enumerate(
            range(0, max_tokens_across_dispatchers, moe_dp_chunk_size_per_rank)
        ):
            chunk_start = chunk_start_
            chunk_end = min(
                chunk_start + moe_dp_chunk_size_per_rank, max_tokens_across_dispatchers
            )
            # clamp start and end
            chunk_start = min(chunk_start, num_tokens - 1)
            chunk_end = min(chunk_end, num_tokens)
            with ctx.dp_metadata.chunked_sizes(
                self.moe_config.sp_size, moe_dp_chunk_size_per_rank, chunk_idx
            ):
                process_chunk(
                    chunk_start, chunk_end, skip_result_store=chunk_start_ >= num_tokens
                )

        if self.shared_experts is None:
            return full_fused_final_hidden_states
        else:
            return (full_shared_final_hidden_states, full_fused_final_hidden_states)

    def forward_impl(
        self,
        layer: torch.nn.Module,
        hidden_states: torch.Tensor,
        router_logits: torch.Tensor,
        shared_input: torch.Tensor | None,
    ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
        assert self.quant_method is not None

        self.ensure_dp_chunking_init()

        has_separate_shared_experts = (
            not self.quant_method.mk_owns_shared_expert
            and self.shared_experts is not None
        )

        use_chunked_impl = self.use_dp_chunking

        use_shared_experts_stream, hidden_states_clone = (
            self._maybe_setup_shared_experts_stream(
                hidden_states,
                shared_input,
                has_separate_shared_experts,
                use_chunked_impl,
            )
        )

        # If router/gate provided, then apply it here.
        # (Note: This code runs only when "overlapped mode" is on to allow
        #        parallel execution of shared experts with the FusedMoE via
        #        separate cuda stream)
        if self.gate is not None:
            router_logits, _ = self.gate(hidden_states)

        if use_chunked_impl:
            return self.forward_impl_chunked(
                layer,
                hidden_states,
                router_logits,
                shared_input,
                has_separate_shared_experts,
            )

        # NOTE(rob): once we finish migrating all the quant methods to use
        # MKs, we can remove the naive dispatch/combine path from here.
        do_naive_dispatch_combine = (
            self.moe_config.dp_size > 1 and not self.quant_method.supports_internal_mk
        )

        ctx = get_forward_context()
        sp_ctx = (
            ctx.dp_metadata.sp_local_sizes(self.moe_config.sp_size)
            if ctx.dp_metadata
            else nullcontext()
        )

        with sp_ctx:
            extra_tensors = None
            if do_naive_dispatch_combine:
                post_quant_allgather = (
                    self.quant_method is not None
                    and self.moe_config.dp_size > 1
                    and self.moe_config.use_ep
                    and getattr(self.quant_method, "do_post_quant_allgather", False)
                )
                if post_quant_allgather:
                    hidden_states_to_dispatch, extra_tensors = (
                        self.quant_method.prepare_dp_allgather_tensor(
                            layer, hidden_states, router_logits
                        )
                    )
                else:
                    hidden_states_to_dispatch = hidden_states

                dispatch_res = get_ep_group().dispatch_router_logits(
                    hidden_states_to_dispatch,
                    router_logits,
                    self.moe_config.is_sequence_parallel,
                    extra_tensors=extra_tensors,
                )
                if extra_tensors is not None:
                    (
                        orig_hidden_states,
                        router_logits,
                        extra_tensors_combined,
                    ) = dispatch_res
                    hidden_states_combined = (
                        orig_hidden_states,
                        extra_tensors_combined[0],
                    )
                else:
                    hidden_states_combined, router_logits = dispatch_res
                    orig_hidden_states = hidden_states_combined
            else:
                orig_hidden_states = hidden_states

            # Run shared experts before matrix multiply.
            # because matrix multiply maybe modify the hidden_states.
            if has_separate_shared_experts and not use_shared_experts_stream:
                assert self.shared_experts is not None
                shared_input = (
                    shared_input if shared_input is not None else hidden_states
                )
                shared_output = self.shared_experts(shared_input)

            # NOTE: Similar with DP, PCP also needs dispatch and combine. For
            # simplicity, AgRsAll2All was added separately for PCP here. Maybe
            # we should modify All2AllManager abstract to better support PCP.
            if self.moe_config.pcp_size > 1:
                hidden_states = get_pcp_group().all_gather(
                    hidden_states,
                    dim=0,
                )
                router_logits = get_pcp_group().all_gather(
                    router_logits,
                    dim=0,
                )

            # TODO(bnell): deal with fp4 flashinfer tuple hidden states hack (#30014).
            # Figure out nicer way to do this.
            if do_naive_dispatch_combine:
                x = hidden_states_combined
                x_orig = orig_hidden_states
            else:
                x = hidden_states
                x_orig = hidden_states

            # Matrix multiply.
            if self.quant_method.is_monolithic:
                final_hidden_states = self.quant_method.apply_monolithic(
                    layer=layer,
                    x=x,
                    router_logits=router_logits,
                )
            else:
                topk_weights, topk_ids = self.router.select_experts(
                    hidden_states=x_orig,
                    router_logits=router_logits,
                )

                final_hidden_states = self.quant_method.apply(
                    layer=layer,
                    x=x,  # The type signture of this is wrong due to the hack.
                    topk_weights=topk_weights,
                    topk_ids=topk_ids,
                    shared_experts_input=shared_input,
                )

            if has_separate_shared_experts:
                assert self.shared_experts is not None

                if use_shared_experts_stream:
                    # Run shared experts in parallel on a separate stream
                    # NOTE: We start the separate stream here and mark the
                    # sync end point immediately after it is done. This is
                    # important to avoid excessive stream allocations by the cuda
                    # graph replay later.
                    with torch.cuda.stream(self.shared_experts_stream):
                        # Note that hidden_states clone() is necessary here to avoid
                        # conflict with the main stream
                        shared_output = self.shared_experts(hidden_states_clone)
                    current_stream().wait_stream(self.shared_experts_stream)

                final_hidden_states = (
                    shared_output,
                    final_hidden_states,
                )

            def combine_output(states: torch.Tensor) -> torch.Tensor:
                if do_naive_dispatch_combine:
                    states = get_ep_group().combine(
                        states, self.moe_config.is_sequence_parallel
                    )

                if self.moe_config.pcp_size > 1:
                    states = get_pcp_group().reduce_scatter(
                        states,
                        dim=0,
                    )

                return states

            if self.shared_experts is not None:
                return (
                    final_hidden_states[0],
                    combine_output(final_hidden_states[1]),
                )
            else:
                return combine_output(final_hidden_states)

apply_routed_input_transform

apply_routed_input_transform(
    hidden_states: Tensor,
) -> Tensor

Apply transform for routed experts (e.g., latent projection).

This is called by FusedMoE.forward_native. The original hidden_states is saved separately so shared experts get [S, hidden_size] while routed experts get the transformed [S, moe_latent_size].

TODO: For latent MoE bandwidth optimization, fc2_latent_proj could be moved inside SharedFusedMoE to all-reduce on the smaller latent dimension.

Source code in vllm/model_executor/layers/fused_moe/runner/default_moe_runner.py
def apply_routed_input_transform(self, hidden_states: torch.Tensor) -> torch.Tensor:
    """Apply transform for routed experts (e.g., latent projection).

    This is called by FusedMoE.forward_native. The original hidden_states
    is saved separately so shared experts get [S, hidden_size] while
    routed experts get the transformed [S, moe_latent_size].

    TODO: For latent MoE bandwidth optimization, fc2_latent_proj could be
    moved inside SharedFusedMoE to all-reduce on the smaller latent
    dimension.
    """
    if self.routed_input_transform is not None:
        result = self.routed_input_transform(hidden_states)
        # ReplicatedLinear returns (output, extra_bias) tuple.
        # We only need the output tensor; extra_bias is not used here.
        if isinstance(result, tuple):
            return result[0]
        return result
    return hidden_states

maybe_all_reduce_tensor_model_parallel

maybe_all_reduce_tensor_model_parallel(
    final_hidden_states: Tensor,
)

Some combine kernels reduce across GPU ranks by default.

Source code in vllm/model_executor/layers/fused_moe/runner/default_moe_runner.py
def maybe_all_reduce_tensor_model_parallel(self, final_hidden_states: torch.Tensor):
    """
    Some combine kernels reduce across GPU ranks by default.
    """
    if self.must_reduce_shared_expert_outputs():
        return final_hidden_states
    else:
        return tensor_model_parallel_all_reduce(final_hidden_states)

must_reduce_shared_expert_outputs

must_reduce_shared_expert_outputs() -> bool

The shared_experts are typically computed using the RowParallelLinear layer. The result of this function is typically used as the reduce_results argument to the module. When just tensor-parallel is used, it is not required to reduce the shared_experts results immediately. Instead we reduce at the once at the end of the MoE op. (Refer to DeepSeekV2MoE module) With EP and all2all kernels - this is no longer viable as all GPU ranks in DP, produce the complete set of hidden_states. Therefore it is required that we reduce the shared_experts output early.

Source code in vllm/model_executor/layers/fused_moe/runner/default_moe_runner.py
def must_reduce_shared_expert_outputs(self) -> bool:
    """
    The shared_experts are typically computed using the RowParallelLinear
    layer. The result of this function is typically used as
    the reduce_results argument to the module.
    When just tensor-parallel is used, it is not required to reduce
    the shared_experts results immediately. Instead we reduce at the
    once at the end of the MoE op. (Refer to DeepSeekV2MoE module)
    With EP and all2all kernels - this is no longer viable as all
    GPU ranks in DP, produce the complete set of hidden_states.
    Therefore it is required that we reduce the shared_experts output
    early.
    """
    assert self.quant_method is not None
    return (
        self.quant_method.moe_mk is not None
        and self.quant_method.moe_mk.output_is_reduced()
    )