Skip to content

vllm.model_executor.layers.quantization.inc

INCConfig

Bases: QuantizationConfig

Config class for Intel Neural Compressor (INC). Repo: https://github.com/intel/neural-compressor

Source code in vllm/model_executor/layers/quantization/inc.py
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
class INCConfig(QuantizationConfig):
    """Config class for Intel Neural Compressor (INC).
    Repo: https://github.com/intel/neural-compressor
    """

    SUPPORTED_BITS = {2, 3, 4, 8}
    SUPPORTED_DTYPES = {"int"}
    SUPPORTED_FORMATS = {"auto_round:auto_gptq", "auto_round:auto_awq"}
    SUPPORTED_BACKENDS = {
        "auto",
        "gptq",
        "gptq:marlin",
        "awq",
        "awq:marlin",
        "marlin",
    }

    def __init__(
        self,
        weight_bits: int,
        group_size: int,
        sym: bool = True,
        packing_format: str = "auto_round:auto_gptq",
        block_name_to_quantize: str | list[str] | None = None,
        extra_config: dict[str, Any] | None = None,
        data_type: str = "int",
        backend: str = "auto",
    ) -> None:
        super().__init__()
        if weight_bits not in self.SUPPORTED_BITS:
            raise ValueError(
                f"Unsupported weight_bits: {weight_bits}, "
                f"currently only support {self.SUPPORTED_BITS}."
            )
        if data_type not in self.SUPPORTED_DTYPES:
            raise ValueError(
                f"Unsupported data_type: {data_type},"
                f" currently only support  {self.SUPPORTED_DTYPES}."
            )
        if packing_format not in self.SUPPORTED_FORMATS:
            raise ValueError(
                f"Unsupported packing_format: {packing_format}, "
                f"currently only support {self.SUPPORTED_FORMATS}."
            )
        if backend not in self.SUPPORTED_BACKENDS:
            raise ValueError(
                f"Unsupported backend: {backend},  "
                f"currently only support {self.SUPPORTED_BACKENDS}."
            )

        self.weight_bits = weight_bits
        self.group_size = group_size
        self.sym = sym
        self.packing_format = packing_format
        self.block_name_to_quantize = (
            block_name_to_quantize.split(",")
            if isinstance(block_name_to_quantize, str)
            else block_name_to_quantize
        )
        self.extra_config = extra_config
        self.data_type = data_type
        self.backend = backend
        self.pack_factor = Fraction(32, weight_bits)

    def __repr__(self) -> str:
        return (
            f"INCConfig(weight_bits={self.weight_bits}, "
            f"group_size={self.group_size}, sym={self.sym})"
        )

    @classmethod
    def get_name(cls) -> QuantizationMethods:
        return "inc"

    @classmethod
    def get_supported_act_dtypes(cls) -> list[torch.dtype]:
        return [torch.half, torch.bfloat16]

    @classmethod
    def get_min_capability(cls) -> int:
        return 60

    @classmethod
    def get_config_filenames(cls) -> list[str]:
        return ["quantization_config.json"]

    @classmethod
    def from_config(cls, config: dict[str, Any]) -> "INCConfig":
        return cls(
            weight_bits=cls.get_from_keys(config, ["bits"]),
            group_size=cls.get_from_keys(config, ["group_size"]),
            sym=cls.get_from_keys(config, ["sym"]),
            packing_format=cls.get_from_keys_or(
                config, ["packing_format"], "auto_round:auto_gptq"
            ),
            block_name_to_quantize=cls.get_from_keys_or(
                config, ["block_name_to_quantize", "to_quant_block_names"], None
            ),
            extra_config=cls.get_from_keys_or(config, ["extra_config"], None),
            data_type=cls.get_from_keys_or(config, ["data_type"], "int"),
            backend=cls.get_from_keys_or(config, ["backend", "vllm_backend"], "auto"),
        )

    def get_layer_config(self, layer, layer_name: str):
        def get_config(name: str, quantized: bool = True):
            if not self.extra_config:
                return (
                    self.weight_bits if quantized else 16,
                    self.group_size if quantized else -1,
                    self.sym if quantized else True,
                )

            # exact match first
            if name in self.extra_config:
                cfg = self.extra_config[name]
                return (
                    cfg.get("bits", self.weight_bits if quantized else 16),
                    cfg.get("group_size", self.group_size if quantized else -1),
                    cfg.get("sym", self.sym if quantized else True),
                )

            REGEX_SPECIAL_CHARS = set(r"*+?^$()[]{}|\\")
            for pattern, cfg in self.extra_config.items():
                if not isinstance(pattern, str) or not any(
                    c in REGEX_SPECIAL_CHARS for c in pattern
                ):
                    continue

                try:
                    if re.search(re.compile(pattern), name) is not None:
                        return (
                            cfg.get("bits", self.weight_bits if quantized else 16),
                            cfg.get("group_size", self.group_size if quantized else -1),
                            cfg.get("sym", self.sym if quantized else True),
                        )
                except re.error:
                    # Invalid regex, ignore.
                    continue

            return (
                self.weight_bits if quantized else 16,
                self.group_size if quantized else -1,
                self.sym if quantized else True,
            )

        # 1. Exact match from config
        if self.extra_config and layer_name in self.extra_config:
            return get_config(layer_name)

        # 2. Determine whether layer should be quantized
        quantized = not isinstance(layer, ParallelLMHead)
        if self.block_name_to_quantize:
            quantized = any(
                layer_name.startswith(name) for name in self.block_name_to_quantize
            )

        # 3. Handle fused MoE
        if self.extra_config and "fusedmoe" in layer.__class__.__name__.lower():
            moe_configs = [
                get_config(name, quantized)
                for name in self.extra_config
                if name.startswith(layer_name)
            ]
            if moe_configs:
                if len(set(moe_configs)) == 1:
                    return moe_configs[0]
                raise ValueError(
                    f"Fused MoE layer '{layer_name}' requires "
                    f"consistent quant config for all sub-layers"
                )

        # 4. Handle fused QKV or other patterns
        if self.extra_config:
            for fusion_key, sub_keys in self.packed_modules_mapping.items():
                if fusion_key in layer_name and layer_name.count(fusion_key) == 1:
                    sub_names = [
                        layer_name.replace(fusion_key, sub_key) for sub_key in sub_keys
                    ]
                    sub_configs = [get_config(name, quantized) for name in sub_names]
                    if len(set(sub_configs)) == 1:
                        return sub_configs[0]
                    raise ValueError(
                        f"Fused module '{layer_name}' requires "
                        f"consistent quant config for {sub_names}"
                    )

        # 5. Fallback or try a regular expression match
        return get_config(layer_name, quantized)

    def check_quantized(self, weight_bits: int) -> bool:
        return weight_bits < 16

    def apply_vllm_mapper(self, hf_to_vllm_mapper: "WeightsMapper"):
        if self.block_name_to_quantize is not None:
            self.block_name_to_quantize = hf_to_vllm_mapper.apply_list(
                self.block_name_to_quantize
            )
        if self.extra_config is not None:
            self.extra_config = hf_to_vllm_mapper.apply_dict(self.extra_config)

    def apply_awq_quant_layer(self, layer, prefix: str, backend: str = "auto"):
        from vllm.model_executor.layers.fused_moe import FusedMoE
        from vllm.model_executor.layers.quantization.utils.marlin_utils import (
            check_marlin_supported,
            check_moe_marlin_supports_layer,
        )

        weight_bits, group_size, sym = self.get_layer_config(layer, prefix)
        if not self.check_quantized(weight_bits):
            if isinstance(layer, (LinearBase, ParallelLMHead)):
                return UnquantizedLinearMethod()
            else:
                return None

        logger.debug(
            "[%s] Type: %s, Bits: %s, Group Size: %s, Sym: %s",
            prefix,
            layer.__class__.__name__,
            weight_bits,
            group_size,
            sym,
        )
        if backend == "auto" or "marlin" in backend:
            AWQ_TYPE_MAP = {
                4: scalar_types.uint4,
                8: scalar_types.uint8,
            }
            use_marlin = (weight_bits in AWQ_TYPE_MAP) and check_marlin_supported(
                AWQ_TYPE_MAP[weight_bits], group_size, not sym
            )

            if isinstance(layer, FusedMoE):
                use_marlin = use_marlin and check_moe_marlin_supports_layer(
                    layer, group_size
                )

        else:
            use_marlin = False
        if use_marlin:
            from vllm.model_executor.layers.quantization.awq_marlin import (
                AWQMarlinConfig,
                AWQMarlinLinearMethod,
                AWQMarlinMoEMethod,
            )

            quant_args_marlin = AWQMarlinConfig(
                weight_bits=weight_bits,
                group_size=group_size,
                zero_point=not sym,
                lm_head_quantized=False,
                full_config={},
                modules_to_not_convert=[],
            )
        else:
            from vllm.model_executor.layers.quantization.awq import (
                AWQConfig,
                AWQLinearMethod,
            )

            quant_args = AWQConfig(
                weight_bits=weight_bits,
                group_size=group_size,
                zero_point=not sym,
            )

        if isinstance(layer, FusedMoE):
            if use_marlin:
                return AWQMarlinMoEMethod(quant_args_marlin, layer.moe_config)
            from vllm.model_executor.layers.quantization.moe_wna16 import MoeWNA16Config

            config = {
                "quant_method": "awq",
                "bits": weight_bits,
                "group_size": group_size,
                "zero_point": not sym,
                "lm_head": False,
            }
            return MoeWNA16Config.from_config(config).get_quant_method(layer, prefix)

        if isinstance(layer, (LinearBase, ParallelLMHead)):
            if use_marlin:
                return AWQMarlinLinearMethod(quant_args_marlin)
            else:
                return AWQLinearMethod(quant_args)
        return None

    def apply_gptq_quant_layer(self, layer, prefix: str, backend: str = "auto"):
        from vllm.model_executor.layers.fused_moe import FusedMoE
        from vllm.model_executor.layers.quantization.utils.marlin_utils import (
            check_marlin_supported,
            check_moe_marlin_supports_layer,
        )

        weight_bits, group_size, sym = self.get_layer_config(layer, prefix)
        if not self.check_quantized(weight_bits):
            if isinstance(layer, (LinearBase, ParallelLMHead)):
                return UnquantizedLinearMethod()
            else:
                return None

        logger.debug(
            "[%s] Type: %s, Bits: %s, Group Size: %s, Sym: %s",
            prefix,
            layer.__class__.__name__,
            weight_bits,
            group_size,
            sym,
        )
        if backend == "auto" or "marlin" in backend:
            GPTQ_TYPE_MAP = {
                (4, True): scalar_types.uint4b8,
                (8, True): scalar_types.uint8b128,
            }
            use_marlin = (weight_bits, sym) in GPTQ_TYPE_MAP and check_marlin_supported(
                GPTQ_TYPE_MAP[(weight_bits, sym)], group_size, has_zp=not sym
            )
            if isinstance(layer, FusedMoE):
                use_marlin = use_marlin and check_moe_marlin_supports_layer(
                    layer, group_size
                )
        else:
            use_marlin = False
        if use_marlin:
            from vllm.model_executor.layers.quantization.gptq_marlin import (
                GPTQMarlinConfig,
                GPTQMarlinLinearMethod,
                GPTQMarlinMoEMethod,
            )

            quant_args_marlin = GPTQMarlinConfig(
                weight_bits=weight_bits,
                group_size=group_size,
                is_sym=sym,
                lm_head_quantized=False,
                desc_act=False,
                dynamic={},
                full_config={},
            )
        else:
            from vllm.model_executor.layers.quantization.gptq import (
                GPTQConfig,
                GPTQLinearMethod,
            )

            quant_args = GPTQConfig(
                weight_bits=weight_bits,
                group_size=group_size,
                lm_head_quantized=False,
                desc_act=False,
                dynamic={},
            )

        if isinstance(layer, FusedMoE):
            if use_marlin:
                return GPTQMarlinMoEMethod(quant_args_marlin, layer.moe_config)
            else:
                from vllm.model_executor.layers.quantization.moe_wna16 import (
                    MoeWNA16Config,
                )

                config = {
                    "quant_method": "gptq",
                    "bits": weight_bits,
                    "group_size": group_size,
                    "sym": sym,
                    "lm_head": False,
                }
                return MoeWNA16Config.from_config(config).get_quant_method(
                    layer, prefix
                )

        if isinstance(layer, (LinearBase, ParallelLMHead)):
            if use_marlin:
                return GPTQMarlinLinearMethod(quant_args_marlin)
            else:
                return GPTQLinearMethod(quant_args)

        return None

    def apply_ipex_quant_layer(self, layer, prefix: str):
        weight_bits, group_size, sym = self.get_layer_config(layer, prefix)
        if not self.check_quantized(weight_bits):
            if isinstance(layer, (LinearBase, ParallelLMHead)):
                return UnquantizedLinearMethod()
            else:
                return None
        raise NotImplementedError(
            "INC quantization is not supported during xpu kernel migration."
        )

    def get_quant_method(self, layer: torch.nn.Module, prefix: str):
        if prefix and self.extra_config:
            for layer_name in self.extra_config:
                if (
                    layer_name == prefix or layer_name == f"model.{prefix}"
                ) and self.extra_config[layer_name].get("bits", 16) >= 16:
                    return UnquantizedLinearMethod()
        if (
            current_platform.is_cpu()
            or current_platform.is_xpu()
            or self.backend == "ipex"
        ):
            return self.apply_ipex_quant_layer(layer, prefix)
        if "gptq" in self.packing_format or "gptq" in self.backend:
            return self.apply_gptq_quant_layer(layer, prefix)
        if "awq" in self.packing_format or "awq" in self.backend:
            return self.apply_awq_quant_layer(layer, prefix)

    @classmethod
    def override_quantization_method(
        cls, hf_quant_cfg, user_quant
    ) -> "QuantizationMethods | None":
        """Override the `auto-round` method to `inc`."""
        is_auto_round_format = hf_quant_cfg.get("quant_method", None) == "auto-round"
        if is_auto_round_format:
            return cls.get_name()
        return None

override_quantization_method classmethod

override_quantization_method(
    hf_quant_cfg, user_quant
) -> QuantizationMethods | None

Override the auto-round method to inc.

Source code in vllm/model_executor/layers/quantization/inc.py
@classmethod
def override_quantization_method(
    cls, hf_quant_cfg, user_quant
) -> "QuantizationMethods | None":
    """Override the `auto-round` method to `inc`."""
    is_auto_round_format = hf_quant_cfg.get("quant_method", None) == "auto-round"
    if is_auto_round_format:
        return cls.get_name()
    return None