Skip to content

vllm.model_executor.models.deepseek_mtp

DeepSeekMTP

Bases: Module, DeepseekV2MixtureOfExperts

Source code in vllm/model_executor/models/deepseek_mtp.py
@support_torch_compile
class DeepSeekMTP(nn.Module, DeepseekV2MixtureOfExperts):
    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        self.config = vllm_config.model_config.hf_config
        self.model = DeepSeekMultiTokenPredictor(
            vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
        )
        # Set MoE hyperparameters
        self.set_moe_parameters()

    def set_moe_parameters(self):
        self.expert_weights = []
        self.num_moe_layers = self.config.num_nextn_predict_layers
        self.num_expert_groups = self.config.n_group

        self.moe_layers = []
        self.moe_mlp_layers = []
        example_moe = None
        for layer in self.model.layers.values():
            assert isinstance(layer, DeepSeekMultiTokenPredictorLayer)
            layer = layer.mtp_block
            assert isinstance(layer, DeepseekV2DecoderLayer)
            if isinstance(layer.mlp, DeepseekV2MoE):
                example_moe = layer.mlp
                self.moe_mlp_layers.append(layer.mlp)
                self.moe_layers.append(layer.mlp.experts)
        self.extract_moe_parameters(example_moe)

    def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.model.embed_input_ids(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor | None,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        intermediate_tensors: IntermediateTensors | None = None,
        inputs_embeds: torch.Tensor | None = None,
        spec_step_idx: int = 0,
    ) -> torch.Tensor:
        hidden_states = self.model(
            input_ids, positions, hidden_states, inputs_embeds, spec_step_idx
        )
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        spec_step_idx: int = 0,
    ) -> torch.Tensor | None:
        return self.model.compute_logits(hidden_states, spec_step_idx)

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
        rocm_aiter_moe_shared_expert_enabled = (
            rocm_aiter_ops.is_fusion_moe_shared_experts_enabled()
        )
        stacked_params_mapping = [
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
            ("fused_qkv_a_proj", "q_a_proj", 0),
            ("fused_qkv_a_proj", "kv_a_proj_with_mqa", 1),
        ]

        expert_params_mapping = SharedFusedMoE.make_expert_params_mapping(
            self,
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
            num_experts=self.config.n_routed_experts
            + (
                self.config.n_shared_experts
                if rocm_aiter_moe_shared_expert_enabled
                else 0
            ),
        )

        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()
        for name, loaded_weight in weights:
            if "rotary_emb.inv_freq" in name:
                continue
            spec_layer = get_spec_layer_idx_from_weight_name(self.config, name)
            if spec_layer is None:
                continue
            is_fusion_moe_shared_experts_layer = (
                rocm_aiter_moe_shared_expert_enabled and ("mlp.shared_experts" in name)
            )
            name = self._rewrite_spec_layer_name(spec_layer, name)
            for param_name, weight_name, shard_id in stacked_params_mapping:
                # Skip non-stacked layers and experts (experts handled below).
                if weight_name not in name:
                    continue
                # We have mlp.experts[0].gate_proj in the checkpoint.
                # Since we handle the experts below in expert_params_mapping,
                # we need to skip here BEFORE we update the name, otherwise
                # name will be updated to mlp.experts[0].gate_up_proj, which
                # will then be updated below in expert_params_mapping
                # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                if ("mlp.experts." in name) and name not in params_dict:
                    continue
                if is_fusion_moe_shared_experts_layer:
                    continue
                name_mapped = name.replace(weight_name, param_name)

                # QKV fusion is optional, fall back to normal
                # weight loading if it's not enabled
                if (
                    param_name == "fused_qkv_a_proj"
                ) and name_mapped not in params_dict:
                    continue
                else:
                    name = name_mapped

                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue

                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                # Special handling: when AITER fusion_shared_experts is enabled,
                # checkpoints may provide a single widened shared_experts tensor
                # without explicit expert indices
                # (e.g. ...mlp.shared_experts.gate_proj.weight).
                # For models with multiple shared experts, split that tensor
                # evenly into per-shared-expert slices and load them into
                # appended expert slots mlp.experts.{n_routed_experts + j}.*
                # accordingly.
                num_chunks = 1
                if is_fusion_moe_shared_experts_layer:
                    num_chunks = getattr(self.config, "n_shared_experts", 1) or 1
                    # Determine split axis based on op type
                    # gate/up: ColumnParallel → split along dim 0
                    # down: RowParallel → split along dim 1
                    split_dim = (
                        1
                        if ("down_proj.weight" in name and loaded_weight.ndim > 1)
                        else 0
                    )
                    total = loaded_weight.shape[split_dim]
                    assert total % num_chunks == 0, (
                        f"Shared expert weight dim {total} "
                        f"not divisible by num_chunks {num_chunks}"
                    )
                    chunk_size = total // num_chunks

                for j in range(num_chunks):
                    chunk_name = name
                    weight_to_load = loaded_weight

                    if is_fusion_moe_shared_experts_layer:
                        chunk_slice = slice(j * chunk_size, (j + 1) * chunk_size)
                        if loaded_weight.ndim == 1:
                            weight_to_load = loaded_weight[chunk_slice]
                        elif split_dim == 0:
                            weight_to_load = loaded_weight[chunk_slice, :]
                        else:
                            weight_to_load = loaded_weight[:, chunk_slice]
                        # Synthesize an expert-style name so expert mapping
                        # can route it
                        chunk_name = name.replace(
                            "mlp.shared_experts",
                            f"mlp.experts.{self.config.n_routed_experts + j}",
                        )

                    # Use expert_params_mapping to locate the destination
                    # param and delegate to its expert-aware weight_loader
                    # with expert_id.
                    is_expert_weight = False
                    for mapping in expert_params_mapping:
                        param_name, weight_name, expert_id, shard_id = mapping
                        if weight_name not in chunk_name:
                            continue

                        # Anyway, this is an expert weight and should not be
                        # attempted to load as other weights later
                        is_expert_weight = True

                        # Do not modify `name` since the loop may continue here
                        # Instead, create a new variable
                        name_mapped = chunk_name.replace(weight_name, param_name)

                        param = params_dict[name_mapped]
                        # We should ask the weight loader to return success or
                        # not here since otherwise we may skip experts with
                        # other available replicas.
                        weight_loader = typing.cast(
                            Callable[..., bool], param.weight_loader
                        )
                        success = weight_loader(
                            param,
                            weight_to_load,
                            name_mapped,
                            shard_id=shard_id,
                            expert_id=expert_id,
                            return_success=True,
                        )
                        if success:
                            if not is_fusion_moe_shared_experts_layer:
                                name = name_mapped
                            else:
                                loaded_params.add(name_mapped)
                            break
                    else:
                        if is_expert_weight:
                            # We've checked that this is an expert weight
                            # However it's not mapped locally to this rank
                            # So we simply skip it
                            continue

                        # Skip loading extra bias for GPTQ models.
                        if name.endswith(".bias") and name not in params_dict:
                            continue

                        name = maybe_remap_kv_scale_name(name, params_dict)
                        if name is None:
                            continue

                        # According to DeepSeek-V3 Technical Report, MTP modules
                        # shares embedding layer. We only load the first weights.
                        if (
                            spec_layer != self.model.mtp_start_layer_idx
                            and ".layers" not in name
                        ):
                            continue

                        param = params_dict[name]
                        weight_loader = getattr(
                            param, "weight_loader", default_weight_loader
                        )
                        weight_loader(param, loaded_weight)
            if not is_fusion_moe_shared_experts_layer:
                loaded_params.add(name)
        return loaded_params

    def _rewrite_spec_layer_name(self, spec_layer: int, name: str) -> str:
        """
        Rewrite the weight name to match the format of the original model.
        Add .mtp_block for modules in transformer layer block for spec layer
        and rename shared layer weights to be top level.
        """
        spec_layer_weight_names = [
            "embed_tokens",
            "enorm",
            "hnorm",
            "eh_proj",
            "shared_head",
        ]
        shared_weight_names = ["embed_tokens"]
        spec_layer_weight = False
        shared_weight = False
        for weight_name in spec_layer_weight_names:
            if weight_name in name:
                spec_layer_weight = True
                if weight_name in shared_weight_names:
                    shared_weight = True
                break
        if not spec_layer_weight:
            # treat rest weights as weights for transformer layer block
            name = name.replace(
                f"model.layers.{spec_layer}.", f"model.layers.{spec_layer}.mtp_block."
            )
        elif shared_weight:
            # treat shared weights as top level weights
            name = name.replace(f"model.layers.{spec_layer}.", "model.")
        return name

_rewrite_spec_layer_name

_rewrite_spec_layer_name(spec_layer: int, name: str) -> str

Rewrite the weight name to match the format of the original model. Add .mtp_block for modules in transformer layer block for spec layer and rename shared layer weights to be top level.

Source code in vllm/model_executor/models/deepseek_mtp.py
def _rewrite_spec_layer_name(self, spec_layer: int, name: str) -> str:
    """
    Rewrite the weight name to match the format of the original model.
    Add .mtp_block for modules in transformer layer block for spec layer
    and rename shared layer weights to be top level.
    """
    spec_layer_weight_names = [
        "embed_tokens",
        "enorm",
        "hnorm",
        "eh_proj",
        "shared_head",
    ]
    shared_weight_names = ["embed_tokens"]
    spec_layer_weight = False
    shared_weight = False
    for weight_name in spec_layer_weight_names:
        if weight_name in name:
            spec_layer_weight = True
            if weight_name in shared_weight_names:
                shared_weight = True
            break
    if not spec_layer_weight:
        # treat rest weights as weights for transformer layer block
        name = name.replace(
            f"model.layers.{spec_layer}.", f"model.layers.{spec_layer}.mtp_block."
        )
    elif shared_weight:
        # treat shared weights as top level weights
        name = name.replace(f"model.layers.{spec_layer}.", "model.")
    return name