Skip to content

vllm.model_executor.models.granitemoe

Inference-only GraniteMoe model.

GraniteMoeMoE

Bases: Module

A tensor-parallel MoE implementation for GraniteMoe that shards each expert across all ranks. Each expert's weights are sharded across all ranks and a fused MoE kernel is used for the forward pass, and finally we reduce the outputs across ranks.

Source code in vllm/model_executor/models/granitemoe.py
class GraniteMoeMoE(nn.Module):
    """A tensor-parallel MoE implementation for GraniteMoe that shards each
    expert across all ranks.
    Each expert's weights are sharded across all ranks and a fused MoE
    kernel is used for the forward pass, and finally we reduce the outputs
    across ranks.
    """

    def __init__(
        self,
        num_experts: int,
        top_k: int,
        hidden_size: int,
        intermediate_size: int,
        params_dtype: torch.dtype | None = None,
        quant_config: QuantizationConfig | None = None,
        tp_size: int | None = None,
        is_sequence_parallel=False,
        prefix: str = "",
    ):
        super().__init__()
        self.hidden_size = hidden_size
        self.is_sequence_parallel = is_sequence_parallel

        # Gate always runs at half / full precision for now.
        self.gate = ReplicatedLinear(
            hidden_size,
            num_experts,
            bias=False,
            params_dtype=params_dtype,
            quant_config=None,
            prefix=f"{prefix}.gate",
        )

        self.experts = FusedMoE(
            num_experts=num_experts,
            top_k=top_k,
            hidden_size=hidden_size,
            intermediate_size=intermediate_size,
            params_dtype=params_dtype,
            reduce_results=True,
            renormalize=True,
            quant_config=quant_config,
            tp_size=tp_size,
            prefix=f"{prefix}.experts",
            is_sequence_parallel=self.is_sequence_parallel,
        )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        # NOTE: hidden_states can have either 1D or 2D shape.
        orig_shape = hidden_states.shape
        hidden_states = hidden_states.view(-1, self.hidden_size)

        if self.is_sequence_parallel:
            hidden_states = sequence_parallel_chunk(hidden_states)

        # router_logits: (num_tokens, n_experts)
        router_logits, _ = self.gate(hidden_states)
        final_hidden_states = self.experts(hidden_states, router_logits)

        if self.is_sequence_parallel:
            final_hidden_states = tensor_model_parallel_all_gather(
                final_hidden_states, 0
            )
            num_tokens = orig_shape[0]
            final_hidden_states = final_hidden_states[:num_tokens]

        return final_hidden_states.view(orig_shape)

GraniteMoeModel

Bases: Module

Source code in vllm/model_executor/models/granitemoe.py
@support_torch_compile
class GraniteMoeModel(nn.Module):
    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()

        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config

        self.config = config
        self.quant_config = quant_config  # Required by MixtralModel

        self.vocab_size = config.vocab_size

        self.embed_tokens = VocabParallelEmbedding(
            self.vocab_size,
            config.hidden_size,
        )
        self.embedding_multiplier = config.embedding_multiplier

        self.start_layer, self.end_layer, self.layers = make_layers(
            config.num_hidden_layers,
            lambda prefix: GraniteMoeDecoderLayer(vllm_config, prefix=prefix),
            prefix=f"{prefix}.layers",
        )

        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.embed_tokens(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor | None,
        positions: torch.Tensor,
        intermediate_tensors: IntermediateTensors | None,
        inputs_embeds: torch.Tensor | None = None,
    ) -> torch.Tensor:
        if get_pp_group().is_first_rank:
            if inputs_embeds is not None:
                hidden_states = inputs_embeds
            else:
                hidden_states = self.embed_input_ids(input_ids)
            hidden_states *= self.embedding_multiplier
        else:
            assert intermediate_tensors is not None
            hidden_states = intermediate_tensors["hidden_states"]
        for layer in islice(self.layers, self.start_layer, self.end_layer):
            hidden_states = layer(positions, hidden_states)
        if not get_pp_group().is_last_rank:
            return IntermediateTensors(
                {
                    "hidden_states": hidden_states,
                }
            )
        hidden_states = self.norm(hidden_states)
        return hidden_states

    def _load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
        """
        This function is copied from `MixtralModel.load_weights`, mainly to
        decouple from mixtral, avoiding impact on support like BNB
        quantization.
        """
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
        ]

        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
        expert_params_mapping = FusedMoE.make_expert_params_mapping(
            self,
            ckpt_gate_proj_name="w1",
            ckpt_down_proj_name="w2",
            ckpt_up_proj_name="w3",
            num_experts=self.config.num_local_experts,
        )

        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()
        for name, loaded_weight in weights:
            if self.quant_config is not None and (
                scale_name := self.quant_config.get_cache_scale(name)
            ):
                # Loading kv cache quantization scales
                param = params_dict[scale_name]
                weight_loader = getattr(param, "weight_loader", default_weight_loader)
                loaded_weight = (
                    loaded_weight if loaded_weight.dim() == 0 else loaded_weight[0]
                )
                weight_loader(param, loaded_weight)
                loaded_params.add(scale_name)
                continue

            for param_name, weight_name, shard_id in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if (
                    name.endswith(".bias") or name.endswith("_bias")
                ) and name not in params_dict:
                    continue
                # Skip layers on other devices.
                if is_pp_missing_parameter(name, self):
                    continue
                if name.endswith("scale"):
                    # Remapping the name of FP8 kv-scale.
                    name = maybe_remap_kv_scale_name(name, params_dict)
                    if name is None:
                        continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                for mapping in expert_params_mapping:
                    param_name, weight_name, expert_id, shard_id = mapping
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)
                    # Skip layers on other devices.
                    if is_pp_missing_parameter(name, self):
                        continue
                    if (
                        name.endswith(".bias") or name.endswith("_bias")
                    ) and name not in params_dict:
                        continue
                    param = params_dict[name]
                    weight_loader = param.weight_loader
                    weight_loader(
                        param,
                        loaded_weight,
                        name,
                        shard_id=shard_id,
                        expert_id=expert_id,
                    )
                    break
                else:
                    # Skip loading extra bias for GPTQ models.
                    if (
                        name.endswith(".bias") or name.endswith("_bias")
                    ) and name not in params_dict:
                        continue
                    # Skip layers on other devices.
                    if is_pp_missing_parameter(name, self):
                        continue
                    # Remapping the name of FP8 kv-scale.
                    name = maybe_remap_kv_scale_name(name, params_dict)
                    if name is None:
                        continue

                    param = params_dict[name]
                    weight_loader = getattr(
                        param, "weight_loader", default_weight_loader
                    )
                    weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
        new_weights = {}
        for n, p in weights:
            if n.endswith(".block_sparse_moe.input_linear.weight"):
                for e in range(p.size(0)):
                    w1_name = n.replace(
                        ".block_sparse_moe.input_linear.weight",
                        f".block_sparse_moe.experts.{e}.w1.weight",
                    )
                    w3_name = n.replace(
                        ".block_sparse_moe.input_linear.weight",
                        f".block_sparse_moe.experts.{e}.w3.weight",
                    )
                    w1_param, w3_param = p[e].chunk(2, dim=0)
                    assert w1_name not in new_weights
                    assert w3_name not in new_weights
                    new_weights[w1_name] = w1_param
                    new_weights[w3_name] = w3_param
            elif n.endswith(".block_sparse_moe.output_linear.weight"):
                for e in range(p.size(0)):
                    w2_name = n.replace(
                        ".block_sparse_moe.output_linear.weight",
                        f".block_sparse_moe.experts.{e}.w2.weight",
                    )
                    w2_param = p[e]
                    assert w2_name not in new_weights
                    new_weights[w2_name] = w2_param
            elif n.endswith(".block_sparse_moe.router.layer.weight"):
                gate_name = n.replace(
                    ".block_sparse_moe.router.layer.weight",
                    ".block_sparse_moe.gate.weight",
                )
                assert gate_name not in new_weights
                new_weights[gate_name] = p
            else:
                new_weights[n] = p
        return self._load_weights(new_weights.items())

_load_weights

_load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]

This function is copied from MixtralModel.load_weights, mainly to decouple from mixtral, avoiding impact on support like BNB quantization.

Source code in vllm/model_executor/models/granitemoe.py
def _load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
    """
    This function is copied from `MixtralModel.load_weights`, mainly to
    decouple from mixtral, avoiding impact on support like BNB
    quantization.
    """
    stacked_params_mapping = [
        # (param_name, shard_name, shard_id)
        ("qkv_proj", "q_proj", "q"),
        ("qkv_proj", "k_proj", "k"),
        ("qkv_proj", "v_proj", "v"),
    ]

    # Params for weights, fp8 weight scales, fp8 activation scales
    # (param_name, weight_name, expert_id, shard_id)
    expert_params_mapping = FusedMoE.make_expert_params_mapping(
        self,
        ckpt_gate_proj_name="w1",
        ckpt_down_proj_name="w2",
        ckpt_up_proj_name="w3",
        num_experts=self.config.num_local_experts,
    )

    params_dict = dict(self.named_parameters())
    loaded_params: set[str] = set()
    for name, loaded_weight in weights:
        if self.quant_config is not None and (
            scale_name := self.quant_config.get_cache_scale(name)
        ):
            # Loading kv cache quantization scales
            param = params_dict[scale_name]
            weight_loader = getattr(param, "weight_loader", default_weight_loader)
            loaded_weight = (
                loaded_weight if loaded_weight.dim() == 0 else loaded_weight[0]
            )
            weight_loader(param, loaded_weight)
            loaded_params.add(scale_name)
            continue

        for param_name, weight_name, shard_id in stacked_params_mapping:
            if weight_name not in name:
                continue
            name = name.replace(weight_name, param_name)
            # Skip loading extra bias for GPTQ models.
            if (
                name.endswith(".bias") or name.endswith("_bias")
            ) and name not in params_dict:
                continue
            # Skip layers on other devices.
            if is_pp_missing_parameter(name, self):
                continue
            if name.endswith("scale"):
                # Remapping the name of FP8 kv-scale.
                name = maybe_remap_kv_scale_name(name, params_dict)
                if name is None:
                    continue
            param = params_dict[name]
            weight_loader = param.weight_loader
            weight_loader(param, loaded_weight, shard_id)
            break
        else:
            for mapping in expert_params_mapping:
                param_name, weight_name, expert_id, shard_id = mapping
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip layers on other devices.
                if is_pp_missing_parameter(name, self):
                    continue
                if (
                    name.endswith(".bias") or name.endswith("_bias")
                ) and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(
                    param,
                    loaded_weight,
                    name,
                    shard_id=shard_id,
                    expert_id=expert_id,
                )
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if (
                    name.endswith(".bias") or name.endswith("_bias")
                ) and name not in params_dict:
                    continue
                # Skip layers on other devices.
                if is_pp_missing_parameter(name, self):
                    continue
                # Remapping the name of FP8 kv-scale.
                name = maybe_remap_kv_scale_name(name, params_dict)
                if name is None:
                    continue

                param = params_dict[name]
                weight_loader = getattr(
                    param, "weight_loader", default_weight_loader
                )
                weight_loader(param, loaded_weight)
        loaded_params.add(name)
    return loaded_params