Skip to content

vllm.model_executor.models.openpangu_vl

OpenPanguVLForConditionalGeneration

Bases: Module, SupportsMultiModal, SupportsLoRA, SupportsPP, SupportsMRoPE

Source code in vllm/model_executor/models/openpangu_vl.py
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
@MULTIMODAL_REGISTRY.register_processor(
    OpenPanguVLMultiModalProcessor,
    info=OpenPanguVLProcessingInfo,
    dummy_inputs=OpenPanguVLDummyInputsBuilder,
)
class OpenPanguVLForConditionalGeneration(
    nn.Module, SupportsMultiModal, SupportsLoRA, SupportsPP, SupportsMRoPE
):
    hf_to_vllm_mapper = WeightsMapper(
        orig_to_new_prefix={
            "model.language_model.": "language_model.model.",
            "model.visual.": "visual.",
            "lm_head.": "language_model.lm_head.",
            "model.": "language_model.model.",
        }
    )
    packed_modules_mapping = {
        "qkv_proj": ["q_proj", "k_proj", "v_proj"],
        "gate_up_proj": ["gate_proj", "up_proj"],
    }

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        self.config = config
        self.vllm_config = vllm_config
        quant_config = vllm_config.quant_config

        with self._mark_tower_model(vllm_config, {"image", "video"}):
            self.visual = OpenPanguVisionTransformer(
                vision_config=config.vision_config,
                out_hidden_size=config.vision_config.out_hidden_size,
                hidden_size=config.hidden_size,
                norm_eps=getattr(config.vision_config, "rms_norm_eps", 1e-6),
                quant_config=self._maybe_ignore_quant_config(quant_config),
                prefix=maybe_prefix(prefix, "visual"),
            )

        with self._mark_language_model(vllm_config):
            self.language_model = init_vllm_registered_model(
                vllm_config=vllm_config,
                prefix=maybe_prefix("openpangu", "language_model"),
                architectures=["PanguEmbeddedForCausalLM"],
            )

        self.make_empty_intermediate_tensors = (
            self.language_model.make_empty_intermediate_tensors
        )
        self._parse_preprocess_params(config.vision_config)

    def _parse_preprocess_params(self, vision_config):
        self.channel = vision_config.in_channels
        self.patch_size = vision_config.patch_size
        from vllm.multimodal import MULTIMODAL_REGISTRY

        image_processor = (
            MULTIMODAL_REGISTRY.create_processor(self.vllm_config.model_config)
            .info.get_hf_processor()
            .image_processor
        )
        self.do_rescale = image_processor.do_rescale
        self.rescale_factor = image_processor.rescale_factor
        self.do_normalize = image_processor.do_normalize
        self.image_mean = tuple(image_processor.image_mean)
        self.image_std = tuple(image_processor.image_std)

    def _maybe_ignore_quant_config(self, quant_config: QuantizationConfig):
        if isinstance(quant_config, (GPTQConfig, GPTQMarlinConfig)):
            return None
        return quant_config

    def _validate_and_reshape_mm_tensor(
        self, mm_input: object, name: str
    ) -> torch.Tensor:
        if not isinstance(mm_input, (torch.Tensor, list)):
            raise ValueError(f"Incorrect type of {name}. Got type: {type(mm_input)}")
        if isinstance(mm_input, torch.Tensor):
            if mm_input.ndim == 2:
                return mm_input
            if mm_input.ndim != 3:
                raise ValueError(
                    f"{name} should be 2D or batched 3D tensor. "
                    f"Got ndim: {mm_input.ndim} "
                    f"(shape={mm_input.shape})"
                )
            return torch.concat(list(mm_input))
        else:
            return torch.concat(mm_input)

    def _parse_and_validate_image_input(self, **kwargs: object):
        pixel_values = kwargs.pop("pixel_values", None)
        image_embeds = kwargs.pop("image_embeds", None)
        image_grid_thw = kwargs.pop("image_grid_thw", None)

        if pixel_values is None and image_embeds is None:
            return None

        if pixel_values is not None:
            pixel_values = self._validate_and_reshape_mm_tensor(
                pixel_values, "image pixel values"
            )
            image_grid_thw = self._validate_and_reshape_mm_tensor(
                image_grid_thw, "image grid_thw"
            )

            if not isinstance(pixel_values, (torch.Tensor, list)):
                raise ValueError(
                    "Incorrect type of image pixel values. "
                    f"Got type: {type(pixel_values)}"
                )

            return OpenPanguVLImagePixelInputs(
                type="pixel_values",
                pixel_values=pixel_values,
                image_grid_thw=image_grid_thw,
            )

        if image_embeds is not None:
            image_embeds = self._validate_and_reshape_mm_tensor(
                image_embeds, "image embeds"
            )
            image_grid_thw = self._validate_and_reshape_mm_tensor(
                image_grid_thw, "image grid_thw"
            )

            if not isinstance(image_embeds, torch.Tensor):
                raise ValueError(
                    "Incorrect type of image embeddings. "
                    f"Got type: {type(image_embeds)}"
                )
            return OpenPanguVLImageEmbeddingInputs(
                type="image_embeds",
                image_embeds=image_embeds,
                image_grid_thw=image_grid_thw,
            )

    def _parse_and_validate_video_input(self, **kwargs: object):
        pixel_values_videos = kwargs.pop("pixel_values_videos", None)
        video_embeds = kwargs.pop("video_embeds", None)
        video_grid_thw = kwargs.pop("video_grid_thw", None)

        if pixel_values_videos is None and video_embeds is None:
            return None

        if pixel_values_videos is not None:
            pixel_values_videos = self._validate_and_reshape_mm_tensor(
                pixel_values_videos, "video pixel values"
            )
            video_grid_thw = self._validate_and_reshape_mm_tensor(
                video_grid_thw, "video grid_thw"
            )

            return OpenPanguVLVideoPixelInputs(
                type="pixel_values_videos",
                pixel_values_videos=pixel_values_videos,
                video_grid_thw=video_grid_thw,
            )

        if video_embeds is not None:
            video_embeds = self._validate_and_reshape_mm_tensor(
                video_embeds, "video embeds"
            )
            video_grid_thw = self._validate_and_reshape_mm_tensor(
                video_grid_thw, "video grid_thw"
            )

            if not isinstance(video_embeds, torch.Tensor):
                raise ValueError(
                    "Incorrect type of video embeddings. "
                    f"Got type: {type(video_embeds)}"
                )
            return OpenPanguVLVideoEmbeddingInputs(
                type="video_embeds",
                video_embeds=video_embeds,
                video_grid_thw=video_grid_thw,
            )

    def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
        mm_input_by_modality = {}
        for input_key in kwargs:
            if (
                input_key in ("pixel_values", "image_embeds")
                and "image" not in mm_input_by_modality
            ):
                mm_input_by_modality["image"] = self._parse_and_validate_image_input(
                    **kwargs
                )
            if (
                input_key in ("pixel_values_videos", "video_embeds")
                and "video" not in mm_input_by_modality
            ):
                mm_input_by_modality["video"] = self._parse_and_validate_video_input(
                    **kwargs
                )
        return mm_input_by_modality

    def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings | None:
        mm_input_by_modality = self._parse_and_validate_multimodal_inputs(**kwargs)
        if not mm_input_by_modality:
            return None

        multimodal_embeddings: tuple[torch.Tensor, ...] = ()

        for modality in mm_input_by_modality:
            multimodal_input = mm_input_by_modality[modality]
            if modality == "image":
                vision_embeddings = self._process_image_input(multimodal_input)
                multimodal_embeddings = (
                    multimodal_embeddings
                    if not vision_embeddings
                    else (multimodal_embeddings + vision_embeddings)
                )
            if modality == "video":
                video_embeddings = self._process_video_input(multimodal_input)
                multimodal_embeddings = (
                    multimodal_embeddings
                    if not video_embeddings
                    else (multimodal_embeddings + video_embeddings)
                )
        return multimodal_embeddings

    def get_input_embeddings(
        self,
        input_ids: torch.Tensor,
        multimodal_embeddings=None,
    ) -> torch.Tensor:
        inputs_embeds = self.language_model.embed_input_ids(input_ids)
        if multimodal_embeddings is not None:
            inputs_embeds = self.embed_input_ids(
                input_ids,
                inputs_embeds,
                multimodal_embeddings,
                [self.config.image_token_id, self.config.video_token_id],
            )
        return inputs_embeds

    def _process_image_input(self, image_input) -> tuple[torch.Tensor, ...]:
        grid_thw = image_input["image_grid_thw"]
        if grid_thw.ndim != 2:
            raise ValueError(f"grid_thw.ndim must be 2, but it is {grid_thw.ndim}")

        if image_input["type"] == "image_embeds":
            image_embeds = image_input["image_embeds"].type(self.visual.dtype)
        else:
            pixel_values = image_input["pixel_values"].type(self.visual.dtype)
            # rescale and normalize
            pixel_values = pixel_values.reshape(
                -1, self.channel, self.patch_size, self.patch_size
            )
            pixel_values = rescale_and_normalize(
                pixel_values,
                self.do_rescale,
                self.rescale_factor,
                self.do_normalize,
                self.image_mean,
                self.image_std,
            )
            pixel_values = pixel_values.reshape(
                -1, self.channel * self.patch_size * self.patch_size
            )
            image_embeds = self.visual(pixel_values, grid_thw=grid_thw)

        # Split concatenated embeddings for each image item.
        merge_size = self.visual.spatial_merge_size
        sizes = grid_thw.prod(-1) // merge_size // merge_size
        return image_embeds.split(sizes.tolist())

    def _process_video_input(self, video_input) -> torch.Tensor:
        grid_thw = video_input["video_grid_thw"]
        if grid_thw.ndim != 2:
            raise ValueError(f"grid_thw.ndim must be 2, but it is {grid_thw.ndim}")

        if video_input["type"] == "video_embeds":
            video_embeds = video_input["video_embeds"].type(self.visual.dtype)
        else:
            pixel_values_videos = video_input["pixel_values_videos"].type(
                self.visual.dtype
            )
            video_embeds = self.visual(pixel_values_videos, grid_thw=grid_thw)

        # Split concatenated embeddings for each video item.
        merge_size = self.visual.spatial_merge_size
        sizes = grid_thw.prod(-1) // merge_size // merge_size

        return video_embeds.split(sizes.tolist())

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: IntermediateTensors | None = None,
        inputs_embeds: torch.Tensor | None = None,
        **kwargs: object,
    ) -> torch.Tensor | IntermediateTensors:
        if intermediate_tensors is not None:
            inputs_embeds = None

        hidden_states = self.language_model.model(
            input_ids=input_ids,
            positions=positions,
            intermediate_tensors=intermediate_tensors,
            inputs_embeds=inputs_embeds,
        )
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata=None,
    ) -> torch.Tensor | None:
        return self.language_model.compute_logits(hidden_states)

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(self)
        return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)

    def get_mm_mapping(self) -> MultiModelKeys:
        """
        Get the module prefix in multimodal models
        """
        return MultiModelKeys.from_string_field(
            language_model="language_model",
            connector="visual.merger.",
            tower_model="visual.",
        )

    @classmethod
    def get_placeholder_str(cls, modality: str, i: int) -> str | None:
        if modality.startswith("image"):
            return "[unused18][unused19][unused20]"
        if modality.startswith("video"):
            return "[unused18][unused32][unused20]"

        raise ValueError("Only image or video modality is supported")

    def iter_mm_grid_thw(
        self, mm_features: list[MultiModalFeatureSpec]
    ) -> Iterator[tuple[str, int, int, int, int]]:
        spatial_merge_size = self.config.vision_config.spatial_merge_size
        for mm_feature in sorted(mm_features, key=lambda f: f.mm_position.offset):
            offset = mm_feature.mm_position.offset
            modality = mm_feature.modality
            if modality == "image":
                t, h, w = mm_feature.data["image_grid_thw"].data.tolist()
                assert t == 1, f"Image must have 1 frame, got {t}"
                yield (
                    modality,
                    offset,
                    1,
                    h // spatial_merge_size,
                    w // spatial_merge_size,
                )
            elif modality == "video":
                t, h, w = mm_feature.data["video_grid_thw"].data.tolist()
                yield (
                    modality,
                    offset,
                    t,
                    h // spatial_merge_size,
                    w // spatial_merge_size,
                )
            else:
                raise ValueError(f"Unsupported modality: {modality}")

    def get_mrope_input_positions(
        self,
        input_tokens: list[int],
        mm_features: list[MultiModalFeatureSpec],
    ) -> tuple[torch.Tensor, int]:
        llm_pos_ids_list: list = []
        st = 0

        for (
            modality,
            offset,
            llm_grid_t,
            llm_grid_h,
            llm_grid_w,
        ) in self.iter_mm_grid_thw(mm_features):
            text_len = offset - st
            st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
            llm_pos_ids_list.append(
                torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx
            )
            if modality == "video":
                eot_bot_pos = torch.full((3, 1), 0, dtype=torch.long)
                offset_pos = max(llm_grid_h, llm_grid_w)
                current_pos = text_len + st_idx
                grid_h = (
                    torch.arange(llm_grid_h)
                    .view(-1, 1)
                    .expand(-1, llm_grid_w)
                    .flatten()
                )
                grid_w = (
                    torch.arange(llm_grid_w)
                    .view(1, -1)
                    .expand(llm_grid_h, -1)
                    .flatten()
                )
                frame_pos = torch.stack(
                    [
                        torch.full_like(grid_h, 0, dtype=torch.long),  # t
                        grid_h,  # h
                        grid_w,  # w
                    ]
                )
                llm_pos_ids_list.append(frame_pos + current_pos)
                for _ in range(llm_grid_t - 1):
                    current_pos = current_pos + offset_pos
                    llm_pos_ids_list.append(eot_bot_pos + current_pos)
                    llm_pos_ids_list.append(eot_bot_pos + current_pos + 1)
                    llm_pos_ids_list.append(frame_pos + current_pos + 2)
                    current_pos += 2
                st = (
                    offset + llm_grid_t * llm_grid_h * llm_grid_w + (llm_grid_t - 1) * 2
                )
            else:
                t_index = (
                    (
                        torch.arange(llm_grid_t)
                        .view(-1, 1)
                        .expand(-1, llm_grid_h * llm_grid_w)
                    )
                    .long()
                    .flatten()
                )
                h_index = (
                    torch.arange(llm_grid_h)
                    .view(1, -1, 1)
                    .expand(llm_grid_t, -1, llm_grid_w)
                    .flatten()
                )
                w_index = (
                    torch.arange(llm_grid_w)
                    .view(1, 1, -1)
                    .expand(llm_grid_t, llm_grid_h, -1)
                    .flatten()
                )
                llm_pos_ids_list.append(
                    torch.stack([t_index, h_index, w_index]) + text_len + st_idx
                )
                st = offset + llm_grid_t * llm_grid_h * llm_grid_w
        if st < len(input_tokens):
            st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
            text_len = len(input_tokens) - st
            llm_pos_ids_list.append(
                torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx
            )
        llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
        mrope_position_delta = (llm_positions.max() + 1 - len(input_tokens)).item()
        return llm_positions, mrope_position_delta

get_mm_mapping

get_mm_mapping() -> MultiModelKeys

Get the module prefix in multimodal models

Source code in vllm/model_executor/models/openpangu_vl.py
def get_mm_mapping(self) -> MultiModelKeys:
    """
    Get the module prefix in multimodal models
    """
    return MultiModelKeys.from_string_field(
        language_model="language_model",
        connector="visual.merger.",
        tower_model="visual.",
    )

rescale_and_normalize

rescale_and_normalize(
    images: Tensor,
    do_rescale: bool,
    rescale_factor: float,
    do_normalize: bool,
    image_mean: float | list[float],
    image_std: float | list[float],
    dtype: dtype = bfloat16,
) -> Tensor

Rescale and normalize images.

Source code in vllm/model_executor/models/openpangu_vl.py
def rescale_and_normalize(
    images: "torch.Tensor",
    do_rescale: bool,
    rescale_factor: float,
    do_normalize: bool,
    image_mean: float | list[float],
    image_std: float | list[float],
    dtype: torch.dtype = torch.bfloat16,
) -> "torch.Tensor":
    """
    Rescale and normalize images.
    """
    image_mean, image_std, do_rescale = _fuse_mean_std_and_rescale_factor(
        do_normalize=do_normalize,
        image_mean=image_mean,
        image_std=image_std,
        do_rescale=do_rescale,
        rescale_factor=rescale_factor,
        device=images.device,
    )
    # if/elif as we use fused rescale and normalize if both are set to True
    if do_normalize:
        images = normalize(images.to(dtype=torch.float32), image_mean, image_std)
    elif do_rescale:
        images = rescale(images, rescale_factor)
    images = images.to(dtype)

    return images