class Phi4MiniJsonToolParser(ToolParser):
"""
Tool call parser for phi-4-mini models intended for use with the
examples/tool_chat_template_llama.jinja template.
Used when --enable-auto-tool-choice --tool-call-parser phi4_mini_json
are all set
"""
def __init__(self, tokenizer: PreTrainedTokenizerBase) -> None:
super().__init__(tokenizer)
# initialize properties used for state when parsing tool calls in
# streaming mode
self.prev_tool_call_arr: list[dict[str, Any]] = []
self.current_tool_id: int = -1
self.current_tool_name_sent: bool = False
self.streamed_args_for_tool: list[
str
] = [] # map what has been streamed for each tool so far to a list
self.bot_token: str = "functools"
def extract_tool_calls(
self, model_output: str, request: ChatCompletionRequest
) -> ExtractedToolCallInformation:
"""
Extract the tool calls from a complete model response.
"""
logger.debug("Model output: %s", model_output)
pattern = r"functools\[(.*?)\]"
matches = re.search(pattern, model_output, re.DOTALL)
if not matches:
logger.debug("No function calls found")
return ExtractedToolCallInformation(
tools_called=False, tool_calls=[], content=model_output
)
try:
function_call_arr: list[dict[str, Any]] = []
try:
json_content = "[" + matches.group(1) + "]"
function_call_arr = json.loads(json_content)
logger.debug(
"Successfully extracted %d function calls", len(function_call_arr)
)
except json.JSONDecodeError as e:
logger.error(
"Failed to parse function calls from model output. Error: %s",
str(e),
)
tool_calls: list[ToolCall] = [
ToolCall(
id=make_tool_call_id(),
type="function",
function=FunctionCall(
name=raw_function_call["name"],
# function call args are JSON but as a string
arguments=json.dumps(
raw_function_call["arguments"]
if "arguments" in raw_function_call
else raw_function_call["parameters"],
ensure_ascii=False,
),
),
)
for raw_function_call in function_call_arr
]
# get any content before the tool call
ret = ExtractedToolCallInformation(
tools_called=True, tool_calls=tool_calls, content=None
)
return ret
except Exception:
return ExtractedToolCallInformation(
tools_called=False, tool_calls=[], content=model_output
)
def extract_tool_calls_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
request: ChatCompletionRequest,
) -> DeltaMessage | None:
return None