Skip to content

vllm.v1.worker.gpu_worker

A GPU worker class.

Worker

Bases: WorkerBase

Source code in vllm/v1/worker/gpu_worker.py
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
class Worker(WorkerBase):
    def __init__(
        self,
        vllm_config: VllmConfig,
        local_rank: int,
        rank: int,
        distributed_init_method: str,
        is_driver_worker: bool = False,
    ):
        super().__init__(
            vllm_config=vllm_config,
            local_rank=local_rank,
            rank=rank,
            distributed_init_method=distributed_init_method,
            is_driver_worker=is_driver_worker,
        )

        # configure float32 matmul precision according to vLLM env.
        precision = envs.VLLM_FLOAT32_MATMUL_PRECISION
        torch.set_float32_matmul_precision(precision)

        # Buffers saved before sleep
        self._sleep_saved_buffers: dict[str, torch.Tensor] = {}

        # Weight transfer engine (initialized on-demand)
        self.weight_transfer_engine = (
            WeightTransferEngineFactory.create_engine(
                self.vllm_config.weight_transfer_config,
                self.vllm_config.parallel_config,
            )
            if self.vllm_config.weight_transfer_config is not None
            else None
        )

        # Torch/CUDA profiler. Enabled and configured through profiler_config.
        self.profiler: Any | None = None
        profiler_config = vllm_config.profiler_config
        if profiler_config.profiler == "torch":
            worker_name = f"{vllm_config.instance_id}-rank-{self.rank}"
            self.profiler = TorchProfilerWrapper(
                profiler_config,
                worker_name=worker_name,
                local_rank=self.local_rank,
                activities=["CPU", "CUDA"],
            )
        elif profiler_config.profiler == "cuda":
            self.profiler = CudaProfilerWrapper(profiler_config)
        else:
            self.profiler = None

        self.use_v2_model_runner = envs.VLLM_USE_V2_MODEL_RUNNER

    def sleep(self, level: int = 1) -> None:
        from vllm.device_allocator.cumem import CuMemAllocator

        free_bytes_before_sleep = torch.cuda.mem_get_info()[0]

        # Save the buffers before level 2 sleep
        if level == 2:
            model = self.model_runner.model
            self._sleep_saved_buffers = {
                name: buffer.cpu().clone() for name, buffer in model.named_buffers()
            }

        allocator = CuMemAllocator.get_instance()
        allocator.sleep(offload_tags=("weights",) if level == 1 else tuple())
        free_bytes_after_sleep, total = torch.cuda.mem_get_info()
        freed_bytes = free_bytes_after_sleep - free_bytes_before_sleep
        used_bytes = total - free_bytes_after_sleep
        assert freed_bytes >= 0, "Memory usage increased after sleeping."
        logger.info(
            "Sleep mode freed %s GiB memory, %s GiB memory is still in use.",
            format_gib(freed_bytes),
            format_gib(used_bytes),
        )

    def wake_up(self, tags: list[str] | None = None) -> None:
        from vllm.device_allocator.cumem import CuMemAllocator

        allocator = CuMemAllocator.get_instance()
        allocator.wake_up(tags)

        # Restore the buffers after level 2 sleep
        if len(self._sleep_saved_buffers):
            model = self.model_runner.model
            for name, buffer in model.named_buffers():
                if name in self._sleep_saved_buffers:
                    buffer.data.copy_(self._sleep_saved_buffers[name].data)
            self._sleep_saved_buffers = {}

        # If the KV cache has just been woken up,
        # the internal state of cache_engine must be reset,
        # especially the FP8 scaling factor.
        if (
            (tags is None or "kv_cache" in tags)
            and self.cache_config.cache_dtype.startswith("fp8")
            and hasattr(self.model_runner, "init_fp8_kv_scales")
        ):
            self.model_runner.init_fp8_kv_scales()

    def _maybe_get_memory_pool_context(self, tag: str) -> AbstractContextManager:
        if self.vllm_config.model_config.enable_sleep_mode:
            from vllm.device_allocator.cumem import CuMemAllocator

            allocator = CuMemAllocator.get_instance()
            if tag == "weights":
                assert allocator.get_current_usage() == 0, (
                    "Sleep mode can only be used for one instance per process."
                )
            return allocator.use_memory_pool(tag=tag)
        else:
            return nullcontext()

    def initialize_cache(self, num_gpu_blocks: int, num_cpu_blocks: int) -> None:
        self.cache_config.num_gpu_blocks = num_gpu_blocks
        self.cache_config.num_cpu_blocks = num_cpu_blocks

    @instrument(span_name="Init device")
    def init_device(self):
        if self.device_config.device_type == "cuda":
            # This env var set by Ray causes exceptions with graph building.
            os.environ.pop("NCCL_ASYNC_ERROR_HANDLING", None)
            parallel_config = self.parallel_config
            if (
                parallel_config.distributed_executor_backend
                not in ("ray", "external_launcher")
                and parallel_config.data_parallel_backend != "ray"
                and parallel_config.nnodes_within_dp == 1
            ):
                # Use local DP rank if available, otherwise use global DP rank.
                dp_local_rank = self.parallel_config.data_parallel_rank_local
                if dp_local_rank is None:
                    dp_local_rank = self.parallel_config.data_parallel_index

                tp_pp_world_size = (
                    self.parallel_config.pipeline_parallel_size
                    * self.parallel_config.tensor_parallel_size
                )

                # DP_LOCAL_RANK * TP_PP_WORLD_SIZE + TP_LOCAL_RANK
                self.local_rank += dp_local_rank * tp_pp_world_size
                assert self.local_rank < torch.cuda.device_count(), (
                    f"DP adjusted local rank {self.local_rank} is out of bounds. "
                )
                visible_device_count = (
                    torch.cuda.device_count() if torch.cuda.is_available() else 0
                )
                assert self.parallel_config.local_world_size <= visible_device_count, (
                    f"local_world_size ({self.parallel_config.local_world_size}) must "
                    f"be less than or equal to the number of visible devices "
                    f"({visible_device_count})."
                )

            self.device = torch.device(f"cuda:{self.local_rank}")
            current_platform.set_device(self.device)

            current_platform.check_if_supports_dtype(self.model_config.dtype)

            # Initialize the distributed environment BEFORE taking
            # memory snapshot
            # This ensures NCCL buffers are allocated before we measure
            # available memory
            init_worker_distributed_environment(
                self.vllm_config,
                self.rank,
                self.distributed_init_method,
                self.local_rank,
                current_platform.dist_backend,
            )

            if self.use_v2_model_runner:
                logger.info_once("Using V2 Model Runner", scope="local")

            # Set random seed.
            set_random_seed(self.model_config.seed)

            # Now take memory snapshot after NCCL is initialized
            gc.collect()
            torch.cuda.empty_cache()

            # take current memory snapshot
            self.init_snapshot = init_snapshot = MemorySnapshot(device=self.device)
            self.requested_memory = request_memory(init_snapshot, self.cache_config)
            logger.debug("worker init memory snapshot: %r", self.init_snapshot)
            logger.debug(
                "worker requested memory: %sGiB", format_gib(self.requested_memory)
            )
        else:
            raise RuntimeError(f"Not support device type: {self.device_config.device}")

        # Initialize workspace manager
        num_ubatches = 2 if self.vllm_config.parallel_config.enable_dbo else 1
        init_workspace_manager(self.device, num_ubatches)

        # Construct the model runner
        if self.use_v2_model_runner:
            from vllm.v1.worker.gpu.model_runner import (
                GPUModelRunner as GPUModelRunnerV2,
            )

            # HACK(woosuk): This is a temporary fix to avoid type errors.
            self.model_runner: GPUModelRunner = GPUModelRunnerV2(  # type: ignore
                self.vllm_config, self.device
            )
        else:
            from vllm.v1.worker.gpu_model_runner import (
                GPUModelRunner as GPUModelRunnerV1,
            )

            self.model_runner = GPUModelRunnerV1(self.vllm_config, self.device)

        if self.rank == 0:
            # If usage stat is enabled, collect relevant info.
            report_usage_stats(self.vllm_config)

    # FIXME(youkaichao & ywang96): Use TorchDispatchMode instead of memory pool
    # to hijack tensor allocation.
    def load_model(self) -> None:
        eep_scale_up = os.environ.get("VLLM_ELASTIC_EP_SCALE_UP_LAUNCH") == "1"
        with (
            self._maybe_get_memory_pool_context(tag="weights"),
            set_current_vllm_config(self.vllm_config),
        ):
            self.model_runner.load_model(eep_scale_up=eep_scale_up)

    def update_config(self, overrides: dict[str, Any]) -> None:
        self.model_runner.update_config(overrides)

    def reload_weights(self, *args, **kwargs) -> None:
        self.model_runner.reload_weights(*args, **kwargs)

    @torch.inference_mode()
    def determine_available_memory(self) -> int:
        """Profiles the peak memory usage of the model to determine how much
        memory can be used for KV cache without OOMs.

        The engine will first conduct a profiling of the existing memory usage.
        Then, it calculates the free memory that can be used for KV cache in
        bytes.

        Tip:
            You may limit the usage of GPU memory
            by adjusting the `gpu_memory_utilization` parameter.
        """
        if kv_cache_memory_bytes := self.cache_config.kv_cache_memory_bytes:
            # still need a profile run which compiles the model for
            # max_num_batched_tokens
            self.model_runner.profile_run()

            msg = (
                f"Initial free memory {format_gib(self.init_snapshot.free_memory)} "
                f"GiB, reserved {format_gib(kv_cache_memory_bytes)} GiB memory for "
                "KV Cache as specified by kv_cache_memory_bytes config and "
                "skipped memory profiling. This does not respect the "
                "gpu_memory_utilization config. Only use kv_cache_memory_bytes "
                "config when you want manual control of KV cache memory "
                "size. If OOM'ed, check the difference of initial free "
                "memory between the current run and the previous run "
                "where kv_cache_memory_bytes is suggested and update it "
                "correspondingly."
            )
            logger.info(msg)
            return kv_cache_memory_bytes

        # Execute a forward pass with dummy inputs to profile the memory usage
        # of the model.
        with memory_profiling(
            self.init_snapshot,
            weights_memory=int(self.model_runner.model_memory_usage),
        ) as profile_result:
            self.model_runner.profile_run()

        self.non_torch_memory = profile_result.non_torch_increase
        self.peak_activation_memory = profile_result.torch_peak_increase

        free_gpu_memory = profile_result.after_profile.free_memory
        # NOTE(woosuk): Here we assume that the other processes using the same
        # GPU did not change their memory usage during the profiling.
        assert self.init_snapshot.free_memory >= free_gpu_memory, (
            "Error in memory profiling. "
            f"Initial free memory {format_gib(self.init_snapshot.free_memory)} GiB, "
            f"current free memory {format_gib(free_gpu_memory)} GiB. "
            "This happens when other processes sharing the same container "
            "release GPU memory while vLLM is profiling during initialization. "
            "To fix this, ensure consistent GPU memory allocation or "
            "isolate vLLM in its own container."
        )
        self.available_kv_cache_memory_bytes = (
            self.requested_memory - profile_result.non_kv_cache_memory
        )

        unrequested_memory = self.init_snapshot.free_memory - self.requested_memory
        logger.debug(
            "Initial free memory: %s GiB; Requested memory: %f (util), %s GiB",
            format_gib(self.init_snapshot.free_memory),
            self.cache_config.gpu_memory_utilization,
            format_gib(self.requested_memory),
        )
        logger.debug(
            "Free memory after profiling: %s GiB (total), %s GiB (within requested)",
            format_gib(free_gpu_memory),
            format_gib(free_gpu_memory - unrequested_memory),
        )
        logger.debug(profile_result)
        logger.info_once(
            "Available KV cache memory: %s GiB",
            format_gib(self.available_kv_cache_memory_bytes),
            scope="local",
        )

        return int(self.available_kv_cache_memory_bytes)

    def get_kv_connector_handshake_metadata(self) -> dict | None:
        """Get KV connector metadata from this worker if available."""

        if not has_kv_transfer_group():
            return None

        connector = get_kv_transfer_group()
        # Return None for connectors that don't need to exchange handshake
        # metadata across workers.
        if (metadata := connector.get_handshake_metadata()) is None:
            return None

        tp_rank = get_tp_group().rank_in_group
        return {tp_rank: metadata}

    def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
        return self.model_runner.get_kv_cache_spec()

    def update_max_model_len(self, max_model_len: int) -> None:
        """Update max_model_len after auto-fit to GPU memory.

        This is called when max_model_len=-1 is used and the engine
        automatically determines the maximum context length that fits
        in GPU memory. Workers need to update their cached max_model_len
        to match the engine's decision.
        """
        self.model_config.max_model_len = max_model_len
        if self.model_runner is not None:
            self.model_runner.update_max_model_len(max_model_len)
        logger.debug("Updated max_model_len to %d", max_model_len)

    @instrument(span_name="Allocate KV cache")
    def initialize_from_config(self, kv_cache_config: KVCacheConfig) -> None:
        """Allocate GPU KV cache with the specified kv_cache_config."""

        # Init kv cache connector here, because it requires
        # `kv_cache_config`.
        # NOTE(Kuntai): This need to be done before `initialize_kv_cache`,
        # because `initialize_kv_cache` will inject kv cache groups not
        # related to kv cache connector (e.g. kv cache sharing layers).
        ensure_kv_transfer_initialized(self.vllm_config, kv_cache_config)

        if self.vllm_config.model_config.enable_sleep_mode:
            from vllm.device_allocator.cumem import CuMemAllocator

            allocator = CuMemAllocator.get_instance()
            with allocator.use_memory_pool(tag="kv_cache"):
                self.model_runner.initialize_kv_cache(kv_cache_config)
        else:
            self.model_runner.initialize_kv_cache(kv_cache_config)

    @instrument(span_name="Warmup (GPU)")
    def compile_or_warm_up_model(self) -> None:
        warmup_sizes = []

        if self.vllm_config.compilation_config.mode == CompilationMode.VLLM_COMPILE:
            # warm up sizes that are not in cudagraph capture sizes,
            # but users still want to compile for better performance,
            # e.g. for the max-num-batched token size in chunked prefill.
            compile_sizes = self.vllm_config.compilation_config.compile_sizes
            warmup_sizes = compile_sizes.copy() if compile_sizes is not None else []
            cg_capture_sizes: list[int] = []

            if self.vllm_config.compilation_config.cudagraph_mode != CUDAGraphMode.NONE:
                cg_sizes = self.vllm_config.compilation_config.cudagraph_capture_sizes
                cg_capture_sizes = [] if cg_sizes is None else cg_sizes
                warmup_sizes = [x for x in warmup_sizes if x not in cg_capture_sizes]

            compile_ranges = self.vllm_config.compilation_config.get_compile_ranges()
            # For each compile_range, if none of the batch sizes
            # in warmup_sizes or cudagraph_capture_sizes are in the range,
            # add the end of the range to ensure compilation/warmup.
            all_sizes = set(cg_capture_sizes)
            all_sizes.update([x for x in warmup_sizes if isinstance(x, int)])
            for compile_range in compile_ranges:
                if not any(x in compile_range for x in all_sizes):
                    warmup_sizes.append(compile_range.end)

        # We skip EPLB here since we don't want to record dummy metrics
        for size in sorted(warmup_sizes, reverse=True):
            logger.info("Compile and warming up model for size %d", size)
            self.model_runner._dummy_run(size, skip_eplb=True, remove_lora=False)
        self.model_runner.maybe_remove_all_loras(self.model_runner.lora_config)

        # Warmup and tune the kernels used during model execution before
        # cuda graph capture.
        kernel_warmup(self)

        cuda_graph_memory_bytes = 0
        if not self.model_config.enforce_eager:
            cuda_graph_memory_bytes = self.model_runner.capture_model()

        if self.cache_config.kv_cache_memory_bytes is None and hasattr(
            self, "peak_activation_memory"
        ):
            # Suggests optimal kv cache memory size if we rely on
            # memory_profiling to guess the kv cache memory size which
            # provides peak_activation_memory and a few other memory
            # consumption. `memory_profiling` does not consider
            # CUDAGraph memory size and may not utilize all gpu memory.
            # Users may want fine-grained control to specify kv cache
            # memory size.

            # empirically observed that the memory profiling may
            # slightly underestimate the memory consumption.
            # So leave a small buffer (=150MiB) to avoid OOM.
            redundancy_buffer_memory = 150 * (1 << 20)
            non_kv_cache_memory = (
                self.model_runner.model_memory_usage
                + self.peak_activation_memory
                + self.non_torch_memory
                + cuda_graph_memory_bytes
            )
            kv_cache_memory_bytes_to_gpu_limit = (
                self.init_snapshot.free_memory
                - non_kv_cache_memory
                - redundancy_buffer_memory
            )
            kv_cache_memory_bytes_to_requested_limit = (
                int(self.requested_memory)
                - non_kv_cache_memory
                - redundancy_buffer_memory
            )

            msg = (
                f"Free memory on device "
                f"({format_gib(self.init_snapshot.free_memory)}/"
                f"{format_gib(self.init_snapshot.total_memory)} GiB) on startup. "
                f"Desired GPU memory utilization is "
                f"({self.cache_config.gpu_memory_utilization}, "
                f"{format_gib(self.requested_memory)} GiB). "
                f"Actual usage is {format_gib(self.model_runner.model_memory_usage)} "
                f"GiB for weight, {format_gib(self.peak_activation_memory)} GiB "
                f"for peak activation, {format_gib(self.non_torch_memory)} GiB "
                f"for non-torch memory, and {format_gib(cuda_graph_memory_bytes)} "
                f"GiB for CUDAGraph memory. Replace gpu_memory_utilization "
                f"config with `--kv-cache-memory="
                f"{kv_cache_memory_bytes_to_requested_limit}` "
                f"({format_gib(kv_cache_memory_bytes_to_requested_limit)} GiB) to fit "
                f"into requested memory, or `--kv-cache-memory="
                f"{kv_cache_memory_bytes_to_gpu_limit}` "
                f"({format_gib(kv_cache_memory_bytes_to_gpu_limit)} GiB) to fully "
                f"utilize gpu memory. Current kv cache memory in use is "
                f"{format_gib(self.available_kv_cache_memory_bytes)} GiB."
            )

            logger.debug(msg)

        # Warm up sampler and preallocate memory buffer for logits and other
        # sampling related tensors of max possible shape to avoid memory
        # fragmentation issue.
        # NOTE: This is called after `capture_model` on purpose to prevent
        # memory buffers from being cleared by `torch.cuda.empty_cache`.
        if get_pp_group().is_last_rank:
            max_num_reqs = min(
                self.scheduler_config.max_num_seqs,
                self.scheduler_config.max_num_batched_tokens,
            )

            # We skip EPLB here since we don't want to record dummy metrics
            hidden_states, last_hidden_states = self.model_runner._dummy_run(
                num_tokens=max_num_reqs,
                skip_eplb=True,
                cudagraph_runtime_mode=CUDAGraphMode.NONE,
            )
            if self.model_runner.is_pooling_model:
                self.model_runner._dummy_pooler_run(hidden_states)
            else:
                self.model_runner._dummy_sampler_run(hidden_states=last_hidden_states)

        # Reset the seed to ensure that the random state is not affected by
        # the model initialization and profiling.
        set_random_seed(self.model_config.seed)

    def reset_mm_cache(self) -> None:
        self.model_runner.reset_mm_cache()

    def reset_encoder_cache(self) -> None:
        self.model_runner.reset_encoder_cache()

    def get_model(self) -> nn.Module:
        return self.model_runner.get_model()

    def get_supported_tasks(self) -> tuple[SupportedTask, ...]:
        return self.model_runner.get_supported_tasks()

    def get_encoder_timing_stats(self) -> dict[str, dict[str, float | int]]:
        """Get encoder timing stats from model runner."""
        return self.model_runner.get_encoder_timing_stats()

    def annotate_profile(self, scheduler_output):
        # add trace annotation so that we can easily distinguish
        # context/generation request numbers in each iteration.
        # A context request is a request that has not yet generated any tokens
        if not self.profiler:
            return nullcontext()

        self.profiler.step()

        iteration_details = compute_iteration_details(scheduler_output)

        annotation = "".join(
            [
                "execute_context_",
                str(iteration_details.num_ctx_requests),
                "(",
                str(iteration_details.num_ctx_tokens),
                ")_generation_",
                str(iteration_details.num_generation_requests),
                "(",
                str(iteration_details.num_generation_tokens),
                ")",
            ]
        )
        return self.profiler.annotate_context_manager(annotation)

    @torch.inference_mode()
    def sample_tokens(
        self, grammar_output: "GrammarOutput | None"
    ) -> ModelRunnerOutput | AsyncModelRunnerOutput:
        return self.model_runner.sample_tokens(grammar_output)

    @torch.inference_mode()
    def execute_model(
        self, scheduler_output: "SchedulerOutput"
    ) -> ModelRunnerOutput | AsyncModelRunnerOutput | None:
        intermediate_tensors = None
        forward_pass = scheduler_output.total_num_scheduled_tokens > 0
        num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
        all_gather_tensors = {}
        compilation_config = self.vllm_config.compilation_config
        parallel_config = self.vllm_config.parallel_config

        if (
            parallel_config.pipeline_parallel_size > 1
            and compilation_config.pass_config.enable_sp
            and forward_pass
        ):
            # currently only supported by V1 GPUModelRunner
            assert not self.use_v2_model_runner
            num_scheduled_tokens_np = np.array(
                list(scheduler_output.num_scheduled_tokens.values()),
                dtype=np.int32,
            )
            # TODO(lucas): This is pretty gross; ideally we should only ever call
            # `_determine_batch_execution_and_padding` once (will get called again
            # in `execute_model`) but this requires a larger refactor of PP.
            _, batch_desc, _, _, _ = (
                self.model_runner._determine_batch_execution_and_padding(
                    num_tokens=num_scheduled_tokens,
                    num_reqs=len(num_scheduled_tokens_np),
                    num_scheduled_tokens_np=num_scheduled_tokens_np,
                    max_num_scheduled_tokens=num_scheduled_tokens_np.max(),
                    use_cascade_attn=False,  # TODO(lucas): Handle cascade attention
                )
            )
            all_gather_tensors = {
                "residual": not is_residual_scattered_for_sp(
                    self.vllm_config, batch_desc.num_tokens
                )
            }

        if forward_pass and not get_pp_group().is_first_rank:
            tensor_dict = get_pp_group().recv_tensor_dict(
                all_gather_group=get_tp_group(),
                all_gather_tensors=all_gather_tensors,
            )
            assert tensor_dict is not None
            intermediate_tensors = IntermediateTensors(tensor_dict)

        with self.annotate_profile(scheduler_output):
            output = self.model_runner.execute_model(
                scheduler_output, intermediate_tensors
            )
            if isinstance(
                output, ModelRunnerOutput | AsyncModelRunnerOutput | NoneType
            ):
                return output

        assert isinstance(output, IntermediateTensors)
        parallel_config = self.vllm_config.parallel_config
        assert (
            parallel_config.distributed_executor_backend != "external_launcher"
            and not get_pp_group().is_last_rank
        )

        get_pp_group().send_tensor_dict(
            output.tensors,
            all_gather_group=get_tp_group(),
            all_gather_tensors=all_gather_tensors,
        )

        return None

    def take_draft_token_ids(self) -> DraftTokenIds | None:
        return self.model_runner.take_draft_token_ids()

    def profile(self, is_start: bool = True):
        if self.profiler is None:
            raise RuntimeError(
                "Profiling is not enabled. Please set --profiler-config to enable "
                "profiling. Example: "
                "'--profiler-config.profiler=torch --profiler-config.torch_profiler_dir"
                "=YOUR_DIR_PATH_TO_DUMP_TRACE'"
            )
        if is_start:
            self.profiler.start()
        else:
            self.profiler.stop()

    def execute_dummy_batch(self) -> None:
        self.model_runner._dummy_run(1, uniform_decode=True)

    def add_lora(self, lora_request: LoRARequest) -> bool:
        return self.model_runner.add_lora(lora_request)

    def remove_lora(self, lora_id: int) -> bool:
        return self.model_runner.remove_lora(lora_id)

    def list_loras(self) -> set[int]:
        return self.model_runner.list_loras()

    def pin_lora(self, lora_id: int) -> bool:
        return self.model_runner.pin_lora(lora_id)

    def check_health(self) -> None:
        # worker will always be healthy as long as it's running.
        return

    def _eplb_before_scale_down(self, old_ep_size: int, new_ep_size: int) -> None:
        from vllm.distributed.parallel_state import get_ep_group

        if get_ep_group().rank == 0:
            logger.info(
                "[Elastic EP] Starting expert resharding before scaling down..."
            )
        rank_mapping = {
            old_ep_rank: old_ep_rank if old_ep_rank < new_ep_size else -1
            for old_ep_rank in range(old_ep_size)
        }
        assert self.model_runner.eplb_state is not None
        self.model_runner.eplb_state.rearrange(
            execute_shuffle=True,
            global_expert_loads=None,
            rank_mapping=rank_mapping,
        )
        torch.cuda.synchronize()
        if get_ep_group().rank == 0:
            logger.info("[Elastic EP] Expert resharding completed!")

    def _eplb_after_scale_up(
        self,
        old_ep_size: int,
        new_ep_size: int,
        global_expert_loads: list[torch.Tensor] | None,
    ) -> None:
        from vllm.distributed.parallel_state import get_ep_group

        if get_ep_group().rank == 0:
            logger.info("[Elastic EP] Starting expert resharding after scaling up...")
        rank_mapping = {old_ep_rank: old_ep_rank for old_ep_rank in range(old_ep_size)}
        assert self.model_runner.eplb_state is not None
        self.model_runner.eplb_state.rearrange(
            execute_shuffle=True,
            global_expert_loads=global_expert_loads,
            rank_mapping=rank_mapping,
        )
        if get_ep_group().rank == 0:
            logger.info("[Elastic EP] Expert resharding completed!")

    def _reconfigure_parallel_config(
        self, reconfig_request: ReconfigureDistributedRequest
    ) -> None:
        """
        Update parallel config with provided reconfig_request
        """
        parallel_config = self.vllm_config.parallel_config
        parallel_config.data_parallel_size = reconfig_request.new_data_parallel_size
        if (
            reconfig_request.new_data_parallel_rank
            != ReconfigureRankType.KEEP_CURRENT_RANK
        ):
            parallel_config.data_parallel_rank = reconfig_request.new_data_parallel_rank
        if (
            reconfig_request.new_data_parallel_rank_local
            != ReconfigureRankType.KEEP_CURRENT_RANK
        ):
            parallel_config.data_parallel_rank_local = (
                reconfig_request.new_data_parallel_rank_local
            )
        parallel_config.data_parallel_master_ip = (
            reconfig_request.new_data_parallel_master_ip
        )
        parallel_config.data_parallel_master_port = (
            reconfig_request.new_data_parallel_master_port
        )

    def _reconfigure_moe(
        self, old_ep_size: int, new_ep_size: int
    ) -> list[torch.Tensor] | None:
        """
        Reconfigure MoE modules with provided reconfig_request

        Return the global expert load if new_ep_size > old_ep_size,
        otherwise None
        """
        from vllm.distributed.parallel_state import (
            get_dp_group,
            get_ep_group,
            prepare_communication_buffer_for_model,
        )
        from vllm.model_executor.layers.fused_moe.layer import (
            FusedMoE,
            FusedMoEParallelConfig,
        )

        parallel_config = self.vllm_config.parallel_config

        def get_moe_modules(model: torch.nn.Module) -> list[FusedMoE]:
            return [
                module
                for module in model.modules()
                if (
                    module.__class__.__name__ == "FusedMoE"
                    or module.__class__.__name__ == "SharedFusedMoE"
                )
            ]

        def update_moe_modules(moe_modules: list[FusedMoE], num_local_experts: int):
            assert all(
                module.moe_config.num_local_experts == num_local_experts
                for module in moe_modules
            ), "All MoE modules must have the same number of experts"
            for module in moe_modules:
                module.moe_config.num_experts = num_local_experts * new_ep_size
                module.global_num_experts = module.moe_config.num_experts
                tp_size = get_tp_group().world_size
                is_sequence_parallel = parallel_config.use_sequence_parallel_moe
                sp_size = tp_size if is_sequence_parallel else 1
                module.moe_parallel_config = FusedMoEParallelConfig.make(
                    tp_size_=tp_size,
                    pcp_size_=get_pcp_group().world_size,
                    dp_size_=get_dp_group().world_size,
                    sp_size_=sp_size,
                    vllm_parallel_config=parallel_config,
                )
                module.moe_config.moe_parallel_config = module.moe_parallel_config
            return moe_modules

        model_moe_modules = get_moe_modules(self.model_runner.model)
        num_local_experts = model_moe_modules[0].moe_config.num_local_experts

        update_moe_modules(model_moe_modules, num_local_experts)
        drafter_model = None
        if hasattr(self.model_runner, "drafter") and hasattr(
            self.model_runner.drafter, "model"
        ):
            drafter_model = self.model_runner.drafter.model
        if drafter_model is not None and is_mixture_of_experts(drafter_model):
            drafter_moe_modules = get_moe_modules(drafter_model)
            # Check if drafter and model have matching configs
            assert (
                drafter_moe_modules[0].moe_config.num_local_experts == num_local_experts
            ), "Drafter and model configs should be the same"
            update_moe_modules(drafter_moe_modules, num_local_experts)

        if new_ep_size < old_ep_size:
            num_local_physical_experts = num_local_experts
            assert self.model_runner.eplb_state is not None
            new_physical_experts = (
                self.model_runner.eplb_state.physical_to_logical_map.shape[1]  # type: ignore[attr-defined]
            )
            parallel_config.eplb_config.num_redundant_experts = (
                new_physical_experts
                - self.model_runner.eplb_state.logical_replica_count.shape[1]  # type: ignore[attr-defined]
            )
            global_expert_loads = None
        else:
            num_local_physical_experts_tensor = torch.tensor(
                [num_local_experts], dtype=torch.int32, device="cpu"
            )
            torch.distributed.broadcast(
                num_local_physical_experts_tensor,
                group=get_ep_group().cpu_group,
                group_src=0,
            )
            num_local_physical_experts = int(num_local_physical_experts_tensor.item())
            new_physical_experts = num_local_physical_experts * new_ep_size
            assert self.model_runner.eplb_state is not None
            global_expert_loads_any = self.model_runner.eplb_state.rearrange(
                execute_shuffle=False
            )
            global_expert_loads = cast(list[torch.Tensor], global_expert_loads_any)
            parallel_config.eplb_config.num_redundant_experts = (
                new_physical_experts - global_expert_loads[0].shape[1]
            )
        prepare_communication_buffer_for_model(self.model_runner.model)
        if drafter_model is not None:
            prepare_communication_buffer_for_model(drafter_model)
        self.model_runner.model.update_physical_experts_metadata(
            num_physical_experts=new_physical_experts,
            num_local_physical_experts=num_local_physical_experts,
        )
        return global_expert_loads

    def reinitialize_distributed(
        self, reconfig_request: ReconfigureDistributedRequest
    ) -> None:
        from vllm.config import set_current_vllm_config
        from vllm.distributed.parallel_state import (
            cleanup_dist_env_and_memory,
            get_ep_group,
        )

        old_ep_size = get_ep_group().world_size
        old_ep_rank = get_ep_group().rank
        new_ep_size = (
            reconfig_request.new_data_parallel_size
            * get_tp_group().world_size
            * get_pp_group().world_size
        )
        if new_ep_size < old_ep_size:
            self._eplb_before_scale_down(old_ep_size, new_ep_size)

        cleanup_dist_env_and_memory()

        if (
            reconfig_request.new_data_parallel_rank
            == ReconfigureRankType.SHUTDOWN_CURRENT_RANK
        ):
            assert old_ep_rank >= new_ep_size
            # shutdown
            return

        self._reconfigure_parallel_config(reconfig_request)

        with set_current_vllm_config(self.vllm_config):
            init_worker_distributed_environment(
                self.vllm_config,
                self.rank,
                self.distributed_init_method,
                self.local_rank,
            )

        global_expert_loads = self._reconfigure_moe(old_ep_size, new_ep_size)

        if new_ep_size > old_ep_size:
            assert global_expert_loads is not None
            self._eplb_after_scale_up(old_ep_size, new_ep_size, global_expert_loads)

    def save_sharded_state(
        self,
        path: str,
        pattern: str | None = None,
        max_size: int | None = None,
    ) -> None:
        from vllm.model_executor.model_loader import ShardedStateLoader

        ShardedStateLoader.save_model(
            self.model_runner.model,
            path,
            pattern=pattern,
            max_size=max_size,
        )

    def save_tensorized_model(
        self,
        tensorizer_config: "TensorizerConfig",
    ) -> None:
        self.model_runner.save_tensorized_model(
            tensorizer_config=tensorizer_config,
        )

    def init_weight_transfer_engine(self, init_info: dict) -> None:
        """
        Initialize weight transfer mechanism.
        For NCCL backend, this creates a process group with the trainer.

        Args:
            init_info: Dictionary containing backend-specific initialization info
        """
        if self.weight_transfer_engine is None:
            raise RuntimeError(
                "Weight transfer not configured. "
                "Please set weight_transfer_config to enable weight transfer."
            )
        # Parse dict into backend-specific typed dataclass
        typed_init_info = self.weight_transfer_engine.parse_init_info(init_info)
        self.weight_transfer_engine.init_transfer_engine(typed_init_info)

    def update_weights(self, update_info: dict) -> None:
        """
        Batched weight update from the trainer.

        Args:
            update_info: Dictionary containing backend-specific update info
        """
        if self.weight_transfer_engine is None:
            raise RuntimeError(
                "Weight transfer not configured. "
                "Please set weight_transfer_config to enable weight transfer."
            )

        # Parse dict into backend-specific typed dataclass
        typed_update_info = self.weight_transfer_engine.parse_update_info(update_info)

        model = self.model_runner.model

        if typed_update_info.is_checkpoint_format:
            from vllm.model_executor.model_loader.reload import (
                finalize_layerwise_reload,
                initialize_layerwise_reload,
            )

            # Use layerwise reload pattern for checkpoint format weights
            with torch.device(self.device):
                initialize_layerwise_reload(model)
                self.weight_transfer_engine.receive_weights(
                    typed_update_info,
                    load_weights=model.load_weights,
                )
                finalize_layerwise_reload(model, self.model_config)
        else:
            # Weights are already in kernel format, copy directly
            def load_weights_direct(
                weights: list[tuple[str, torch.Tensor]],
            ) -> None:
                for name, weight in weights:
                    param = model.get_parameter(name)
                    param.copy_(weight)

            self.weight_transfer_engine.receive_weights(
                typed_update_info,
                load_weights=load_weights_direct,
            )

    def shutdown(self) -> None:
        # has_kv_transfer_group can be None during interpreter shutdown.
        if ensure_kv_transfer_shutdown is not None:
            ensure_kv_transfer_shutdown()
        if self.profiler is not None:
            self.profiler.shutdown()

        if weight_transfer_engine := getattr(self, "weight_transfer_engine", None):
            weight_transfer_engine.shutdown()

_reconfigure_moe

_reconfigure_moe(
    old_ep_size: int, new_ep_size: int
) -> list[Tensor] | None

Reconfigure MoE modules with provided reconfig_request

Return the global expert load if new_ep_size > old_ep_size, otherwise None

Source code in vllm/v1/worker/gpu_worker.py
def _reconfigure_moe(
    self, old_ep_size: int, new_ep_size: int
) -> list[torch.Tensor] | None:
    """
    Reconfigure MoE modules with provided reconfig_request

    Return the global expert load if new_ep_size > old_ep_size,
    otherwise None
    """
    from vllm.distributed.parallel_state import (
        get_dp_group,
        get_ep_group,
        prepare_communication_buffer_for_model,
    )
    from vllm.model_executor.layers.fused_moe.layer import (
        FusedMoE,
        FusedMoEParallelConfig,
    )

    parallel_config = self.vllm_config.parallel_config

    def get_moe_modules(model: torch.nn.Module) -> list[FusedMoE]:
        return [
            module
            for module in model.modules()
            if (
                module.__class__.__name__ == "FusedMoE"
                or module.__class__.__name__ == "SharedFusedMoE"
            )
        ]

    def update_moe_modules(moe_modules: list[FusedMoE], num_local_experts: int):
        assert all(
            module.moe_config.num_local_experts == num_local_experts
            for module in moe_modules
        ), "All MoE modules must have the same number of experts"
        for module in moe_modules:
            module.moe_config.num_experts = num_local_experts * new_ep_size
            module.global_num_experts = module.moe_config.num_experts
            tp_size = get_tp_group().world_size
            is_sequence_parallel = parallel_config.use_sequence_parallel_moe
            sp_size = tp_size if is_sequence_parallel else 1
            module.moe_parallel_config = FusedMoEParallelConfig.make(
                tp_size_=tp_size,
                pcp_size_=get_pcp_group().world_size,
                dp_size_=get_dp_group().world_size,
                sp_size_=sp_size,
                vllm_parallel_config=parallel_config,
            )
            module.moe_config.moe_parallel_config = module.moe_parallel_config
        return moe_modules

    model_moe_modules = get_moe_modules(self.model_runner.model)
    num_local_experts = model_moe_modules[0].moe_config.num_local_experts

    update_moe_modules(model_moe_modules, num_local_experts)
    drafter_model = None
    if hasattr(self.model_runner, "drafter") and hasattr(
        self.model_runner.drafter, "model"
    ):
        drafter_model = self.model_runner.drafter.model
    if drafter_model is not None and is_mixture_of_experts(drafter_model):
        drafter_moe_modules = get_moe_modules(drafter_model)
        # Check if drafter and model have matching configs
        assert (
            drafter_moe_modules[0].moe_config.num_local_experts == num_local_experts
        ), "Drafter and model configs should be the same"
        update_moe_modules(drafter_moe_modules, num_local_experts)

    if new_ep_size < old_ep_size:
        num_local_physical_experts = num_local_experts
        assert self.model_runner.eplb_state is not None
        new_physical_experts = (
            self.model_runner.eplb_state.physical_to_logical_map.shape[1]  # type: ignore[attr-defined]
        )
        parallel_config.eplb_config.num_redundant_experts = (
            new_physical_experts
            - self.model_runner.eplb_state.logical_replica_count.shape[1]  # type: ignore[attr-defined]
        )
        global_expert_loads = None
    else:
        num_local_physical_experts_tensor = torch.tensor(
            [num_local_experts], dtype=torch.int32, device="cpu"
        )
        torch.distributed.broadcast(
            num_local_physical_experts_tensor,
            group=get_ep_group().cpu_group,
            group_src=0,
        )
        num_local_physical_experts = int(num_local_physical_experts_tensor.item())
        new_physical_experts = num_local_physical_experts * new_ep_size
        assert self.model_runner.eplb_state is not None
        global_expert_loads_any = self.model_runner.eplb_state.rearrange(
            execute_shuffle=False
        )
        global_expert_loads = cast(list[torch.Tensor], global_expert_loads_any)
        parallel_config.eplb_config.num_redundant_experts = (
            new_physical_experts - global_expert_loads[0].shape[1]
        )
    prepare_communication_buffer_for_model(self.model_runner.model)
    if drafter_model is not None:
        prepare_communication_buffer_for_model(drafter_model)
    self.model_runner.model.update_physical_experts_metadata(
        num_physical_experts=new_physical_experts,
        num_local_physical_experts=num_local_physical_experts,
    )
    return global_expert_loads

_reconfigure_parallel_config

_reconfigure_parallel_config(
    reconfig_request: ReconfigureDistributedRequest,
) -> None

Update parallel config with provided reconfig_request

Source code in vllm/v1/worker/gpu_worker.py
def _reconfigure_parallel_config(
    self, reconfig_request: ReconfigureDistributedRequest
) -> None:
    """
    Update parallel config with provided reconfig_request
    """
    parallel_config = self.vllm_config.parallel_config
    parallel_config.data_parallel_size = reconfig_request.new_data_parallel_size
    if (
        reconfig_request.new_data_parallel_rank
        != ReconfigureRankType.KEEP_CURRENT_RANK
    ):
        parallel_config.data_parallel_rank = reconfig_request.new_data_parallel_rank
    if (
        reconfig_request.new_data_parallel_rank_local
        != ReconfigureRankType.KEEP_CURRENT_RANK
    ):
        parallel_config.data_parallel_rank_local = (
            reconfig_request.new_data_parallel_rank_local
        )
    parallel_config.data_parallel_master_ip = (
        reconfig_request.new_data_parallel_master_ip
    )
    parallel_config.data_parallel_master_port = (
        reconfig_request.new_data_parallel_master_port
    )

determine_available_memory

determine_available_memory() -> int

Profiles the peak memory usage of the model to determine how much memory can be used for KV cache without OOMs.

The engine will first conduct a profiling of the existing memory usage. Then, it calculates the free memory that can be used for KV cache in bytes.

Tip

You may limit the usage of GPU memory by adjusting the gpu_memory_utilization parameter.

Source code in vllm/v1/worker/gpu_worker.py
@torch.inference_mode()
def determine_available_memory(self) -> int:
    """Profiles the peak memory usage of the model to determine how much
    memory can be used for KV cache without OOMs.

    The engine will first conduct a profiling of the existing memory usage.
    Then, it calculates the free memory that can be used for KV cache in
    bytes.

    Tip:
        You may limit the usage of GPU memory
        by adjusting the `gpu_memory_utilization` parameter.
    """
    if kv_cache_memory_bytes := self.cache_config.kv_cache_memory_bytes:
        # still need a profile run which compiles the model for
        # max_num_batched_tokens
        self.model_runner.profile_run()

        msg = (
            f"Initial free memory {format_gib(self.init_snapshot.free_memory)} "
            f"GiB, reserved {format_gib(kv_cache_memory_bytes)} GiB memory for "
            "KV Cache as specified by kv_cache_memory_bytes config and "
            "skipped memory profiling. This does not respect the "
            "gpu_memory_utilization config. Only use kv_cache_memory_bytes "
            "config when you want manual control of KV cache memory "
            "size. If OOM'ed, check the difference of initial free "
            "memory between the current run and the previous run "
            "where kv_cache_memory_bytes is suggested and update it "
            "correspondingly."
        )
        logger.info(msg)
        return kv_cache_memory_bytes

    # Execute a forward pass with dummy inputs to profile the memory usage
    # of the model.
    with memory_profiling(
        self.init_snapshot,
        weights_memory=int(self.model_runner.model_memory_usage),
    ) as profile_result:
        self.model_runner.profile_run()

    self.non_torch_memory = profile_result.non_torch_increase
    self.peak_activation_memory = profile_result.torch_peak_increase

    free_gpu_memory = profile_result.after_profile.free_memory
    # NOTE(woosuk): Here we assume that the other processes using the same
    # GPU did not change their memory usage during the profiling.
    assert self.init_snapshot.free_memory >= free_gpu_memory, (
        "Error in memory profiling. "
        f"Initial free memory {format_gib(self.init_snapshot.free_memory)} GiB, "
        f"current free memory {format_gib(free_gpu_memory)} GiB. "
        "This happens when other processes sharing the same container "
        "release GPU memory while vLLM is profiling during initialization. "
        "To fix this, ensure consistent GPU memory allocation or "
        "isolate vLLM in its own container."
    )
    self.available_kv_cache_memory_bytes = (
        self.requested_memory - profile_result.non_kv_cache_memory
    )

    unrequested_memory = self.init_snapshot.free_memory - self.requested_memory
    logger.debug(
        "Initial free memory: %s GiB; Requested memory: %f (util), %s GiB",
        format_gib(self.init_snapshot.free_memory),
        self.cache_config.gpu_memory_utilization,
        format_gib(self.requested_memory),
    )
    logger.debug(
        "Free memory after profiling: %s GiB (total), %s GiB (within requested)",
        format_gib(free_gpu_memory),
        format_gib(free_gpu_memory - unrequested_memory),
    )
    logger.debug(profile_result)
    logger.info_once(
        "Available KV cache memory: %s GiB",
        format_gib(self.available_kv_cache_memory_bytes),
        scope="local",
    )

    return int(self.available_kv_cache_memory_bytes)

get_encoder_timing_stats

get_encoder_timing_stats() -> dict[
    str, dict[str, float | int]
]

Get encoder timing stats from model runner.

Source code in vllm/v1/worker/gpu_worker.py
def get_encoder_timing_stats(self) -> dict[str, dict[str, float | int]]:
    """Get encoder timing stats from model runner."""
    return self.model_runner.get_encoder_timing_stats()

get_kv_connector_handshake_metadata

get_kv_connector_handshake_metadata() -> dict | None

Get KV connector metadata from this worker if available.

Source code in vllm/v1/worker/gpu_worker.py
def get_kv_connector_handshake_metadata(self) -> dict | None:
    """Get KV connector metadata from this worker if available."""

    if not has_kv_transfer_group():
        return None

    connector = get_kv_transfer_group()
    # Return None for connectors that don't need to exchange handshake
    # metadata across workers.
    if (metadata := connector.get_handshake_metadata()) is None:
        return None

    tp_rank = get_tp_group().rank_in_group
    return {tp_rank: metadata}

init_weight_transfer_engine

init_weight_transfer_engine(init_info: dict) -> None

Initialize weight transfer mechanism. For NCCL backend, this creates a process group with the trainer.

Parameters:

Name Type Description Default
init_info dict

Dictionary containing backend-specific initialization info

required
Source code in vllm/v1/worker/gpu_worker.py
def init_weight_transfer_engine(self, init_info: dict) -> None:
    """
    Initialize weight transfer mechanism.
    For NCCL backend, this creates a process group with the trainer.

    Args:
        init_info: Dictionary containing backend-specific initialization info
    """
    if self.weight_transfer_engine is None:
        raise RuntimeError(
            "Weight transfer not configured. "
            "Please set weight_transfer_config to enable weight transfer."
        )
    # Parse dict into backend-specific typed dataclass
    typed_init_info = self.weight_transfer_engine.parse_init_info(init_info)
    self.weight_transfer_engine.init_transfer_engine(typed_init_info)

initialize_from_config

initialize_from_config(
    kv_cache_config: KVCacheConfig,
) -> None

Allocate GPU KV cache with the specified kv_cache_config.

Source code in vllm/v1/worker/gpu_worker.py
@instrument(span_name="Allocate KV cache")
def initialize_from_config(self, kv_cache_config: KVCacheConfig) -> None:
    """Allocate GPU KV cache with the specified kv_cache_config."""

    # Init kv cache connector here, because it requires
    # `kv_cache_config`.
    # NOTE(Kuntai): This need to be done before `initialize_kv_cache`,
    # because `initialize_kv_cache` will inject kv cache groups not
    # related to kv cache connector (e.g. kv cache sharing layers).
    ensure_kv_transfer_initialized(self.vllm_config, kv_cache_config)

    if self.vllm_config.model_config.enable_sleep_mode:
        from vllm.device_allocator.cumem import CuMemAllocator

        allocator = CuMemAllocator.get_instance()
        with allocator.use_memory_pool(tag="kv_cache"):
            self.model_runner.initialize_kv_cache(kv_cache_config)
    else:
        self.model_runner.initialize_kv_cache(kv_cache_config)

update_max_model_len

update_max_model_len(max_model_len: int) -> None

Update max_model_len after auto-fit to GPU memory.

This is called when max_model_len=-1 is used and the engine automatically determines the maximum context length that fits in GPU memory. Workers need to update their cached max_model_len to match the engine's decision.

Source code in vllm/v1/worker/gpu_worker.py
def update_max_model_len(self, max_model_len: int) -> None:
    """Update max_model_len after auto-fit to GPU memory.

    This is called when max_model_len=-1 is used and the engine
    automatically determines the maximum context length that fits
    in GPU memory. Workers need to update their cached max_model_len
    to match the engine's decision.
    """
    self.model_config.max_model_len = max_model_len
    if self.model_runner is not None:
        self.model_runner.update_max_model_len(max_model_len)
    logger.debug("Updated max_model_len to %d", max_model_len)

update_weights

update_weights(update_info: dict) -> None

Batched weight update from the trainer.

Parameters:

Name Type Description Default
update_info dict

Dictionary containing backend-specific update info

required
Source code in vllm/v1/worker/gpu_worker.py
def update_weights(self, update_info: dict) -> None:
    """
    Batched weight update from the trainer.

    Args:
        update_info: Dictionary containing backend-specific update info
    """
    if self.weight_transfer_engine is None:
        raise RuntimeError(
            "Weight transfer not configured. "
            "Please set weight_transfer_config to enable weight transfer."
        )

    # Parse dict into backend-specific typed dataclass
    typed_update_info = self.weight_transfer_engine.parse_update_info(update_info)

    model = self.model_runner.model

    if typed_update_info.is_checkpoint_format:
        from vllm.model_executor.model_loader.reload import (
            finalize_layerwise_reload,
            initialize_layerwise_reload,
        )

        # Use layerwise reload pattern for checkpoint format weights
        with torch.device(self.device):
            initialize_layerwise_reload(model)
            self.weight_transfer_engine.receive_weights(
                typed_update_info,
                load_weights=model.load_weights,
            )
            finalize_layerwise_reload(model, self.model_config)
    else:
        # Weights are already in kernel format, copy directly
        def load_weights_direct(
            weights: list[tuple[str, torch.Tensor]],
        ) -> None:
            for name, weight in weights:
                param = model.get_parameter(name)
                param.copy_(weight)

        self.weight_transfer_engine.receive_weights(
            typed_update_info,
            load_weights=load_weights_direct,
        )

init_worker_distributed_environment

init_worker_distributed_environment(
    vllm_config: VllmConfig,
    rank: int,
    distributed_init_method: str | None = None,
    local_rank: int = -1,
    backend: str = "nccl",
) -> None

Initialize the distributed environment.

Source code in vllm/v1/worker/gpu_worker.py
def init_worker_distributed_environment(
    vllm_config: VllmConfig,
    rank: int,
    distributed_init_method: str | None = None,
    local_rank: int = -1,
    backend: str = "nccl",
) -> None:
    """Initialize the distributed environment."""
    attention_config = vllm_config.attention_config
    parallel_config = vllm_config.parallel_config
    from vllm.model_executor.layers.batch_invariant import init_batch_invariance

    init_batch_invariance(attention_config.backend)
    override_envs_for_eplb(parallel_config)
    set_custom_all_reduce(not parallel_config.disable_custom_all_reduce)

    init_method = distributed_init_method or "env://"
    init_distributed_environment(
        parallel_config.world_size, rank, init_method, local_rank, backend
    )

    ensure_model_parallel_initialized(
        parallel_config.tensor_parallel_size,
        parallel_config.pipeline_parallel_size,
        parallel_config.prefill_context_parallel_size,
        parallel_config.decode_context_parallel_size,
    )

    # Init ec connector here before KV caches caches init
    # NOTE: We do not init KV caches for Encoder-only instance in EPD disagg mode
    ensure_ec_transfer_initialized(vllm_config)